Letter | Published:

Femtosecond molecular dynamics of tautomerization in model base pairs

Nature volume 378, pages 260263 (16 November 1995) | Download Citation

Subjects

Abstract

HYDROGEN bonds commonly lend robustness and directionality to molecular recognition processes and supramolecular structures1,2. In particular, the two or three hydrogen bonds in Watson–Crick base pairs bind the double-stranded DNA helix and determine the complementarity of the pairing. Watson and Crick pointed out3, however, that the possible tautomers of base pairs, in which hydrogen atoms become attached to the donor atom of the hydrogen bond, might disturb the genetic code, as the tautomer is capable of pairing with different partners. But the dynamics of hydrogen bonds in general, and of this tautomerization process in particular, are not well understood. Here we report observations of the femtosecond dynamics of tautomerization in model base pairs (7-azaindole dimers) containing two hydrogen bonds. Because of the femtosecond resolution of proton motions, we are able to examine the cooperativity of formation of the tautomer (in which the protons on each base are shifted sequentially to the other base), and to determine the characteristic timescales of the motions in a solvent-free environment. We find that the first step occurs on a timescale of a few hundred femtoseconds, whereas the second step, to form the full tautomer, is much slower, taking place within several picoseconds; the timescales are changed significantly by replacing hydrogen with deuterium. These results establish the molecular basis of the dynamics and the role of quantum tunnelling.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Zewail, A. (ed.) The Chemical Bond: Structure and Dynamics (Academic, San Diego, 1992).

  2. 2.

    Designing the Molecular World (Princeton Univ. Press, 1994).

  3. 3.

    & Nature 171, 737–738 (1953).

  4. 4.

    , & Proc. natn. Acad. Sci. U.S.A. 63, 253–260 (1969).

  5. 5.

    & J. Am. chem. Soc. 96, 1674–1682 (1974).

  6. 6.

    & J. phys. Chem. 93, 614–621 (1989).

  7. 7.

    , & Chem. Phys. Lett. 66, 230–233 (1979).

  8. 8.

    , , , & J. Luminescence 48/49, 204–208 (1991).

  9. 9.

    Femtochemistry: Ultrafast Dynamics of the Chemical Bond (World Scientific, Singapore, 1994).

  10. 10.

    , , & J. Am. chem. Soc. 114, 8449–8454 (1992).

  11. 11.

    et al. J. phys. Chem. 99, 7421–7435 (1995).

  12. 12.

    Adv. Quantum Chem. 2, 213–361 (1965).

  13. 13.

    & Int. Rev. phys. Chem. 11, 1–70 (1992).

  14. 14.

    , , & J. chem. Phys. 97, 9046–9061 (1992).

  15. 15.

    J. molec. Biol. 6, 208–213 (1963).

  16. 16.

    Biochemistry 3rd edn (Freeman, New York, 1988).

  17. 17.

    & J. chem. Phys. 42, 2177–2180 (1965).

Download references

Author information

Affiliations

  1. Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, USA

    • A. Douhal
    • , S. K. Kim
    •  & A. H. Zewail

Authors

  1. Search for A. Douhal in:

  2. Search for S. K. Kim in:

  3. Search for A. H. Zewail in:

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/378260a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.