Letter | Published:

Quantum confinement and light emission in SiO2/Si superlattices

Naturevolume 378pages258260 (1995) | Download Citation

Subjects

Abstract

PHOTONIC devices are becoming increasingly important in information and communication technologies. But attempts to integrate photonics with silicon-based microelectronics are hampered by the fact that silicon has an indirect band gap, which prevents efficient electron-photon energy conversion. Light-emitting silicon-based materials have been made using band-structure engineering of SiGe and SiC alloys and Si/Ge superlattices, and by exploiting quantum-confinement effects in nanoscale particles and crystallites1–3. The discovery4,5 that silicon can be etched electrochemically into a highly porous form that emits light with a high quantum yield has opened up the latter approach to intensive study6–12. Here we report the fabrication, by molecular-beam epitaxy, of well-defined superlattices of silicon and SiO2, which emit visible light through photoluminescence. We show that this light emission can be explained in terms of quantum confinement of electrons in the two-dimensional silicon layers. These superlattice structures are robust and compatible with standard silicon technology.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Iyer, S. S. & Xie, Y.-H. Science 260, 40–46 (1993).

  2. 2

    Abeles, B. & Tiedje, T. Phys. Rev. Lett. 51, 2003–2006 (1983).

  3. 3

    Wilson, W. L., Szajowski, P. F. & Brus, L. E. Science 262, 1242–1244 (1993).

  4. 4

    Canham, L. T. Appl. Phys. Lett. 57, 1046–1048 (1990).

  5. 5

    Cullis, A. G. & Canham, L. T. Nature 353, 335–338 (1991).

  6. 6

    Lehmann, V. & Gösele, U. Appl. Phys. Lett. 58, 856–858 (1991).

  7. 7

    Halimaoui, A. et al. Appl. Phys. Lett. 59, 304–306 (1991).

  8. 8

    Petrova-Koch, V. et al. Appl. Phys. Lett. 61, 943–945 (1992).

  9. 9

    Proot, J. P., Delerue, C. & Allan, G. Appl. Phys. Lett. 61, 1948–1950 (1992).

  10. 10

    Van de Walle, C. G. & Northrup, J. E. Phys. Rev. Lett. 70, 1116–1119 (1993).

  11. 11

    Van Buuren, T. et al. Appl. Phys. Lett. 63, 2911–2914 (1993).

  12. 12

    Hybertsen, M. S. Phys. Rev. Lett. 72, 1514–1517 (1994).

  13. 13

    Baribeau, J.-M., Lockwood, D. J. & Lu, Z. H. Mater. Res. Soc. Symp. Proc. Vol. 382 (Materials Research Society, Pittsburg, In the press).

  14. 14

    Lu, Z. H. & Yelon, A. Phys. Rev. B41, 3284–3286 (1990).

  15. 15

    Lu, Z. H., Baribeau, J.-M. & Jackman, T. E. Can. J. Phys. 70, 799–802 (1992).

  16. 16

    Lockwood, D. J. et al. Can. J. Phys. 70, 1184–1193 (1992).

  17. 17

    Tsu, R. Nature 364, 19 (1993).

  18. 18

    Street, R. A. & Biegelsen, D. K. in The Physics of Hydrogenated Amorphous Silicon (eds Joannopoulos, J. D. & Lucovsky, G.) 195–259 (Springer, Berlin, 1984).

Download references

Author information

Affiliations

  1. Institute for Microstructural Sciences, National Research Council of Canada, Ottawa, Ontario, K1A OR6, Canada

    • Z. H. Lu
    • , D. J. Lockwood
    •  & J.-M. Baribeau

Authors

  1. Search for Z. H. Lu in:

  2. Search for D. J. Lockwood in:

  3. Search for J.-M. Baribeau in:

About this article

Publication history

Received

Accepted

Issue Date

DOI

https://doi.org/10.1038/378258a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.