Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Quantum confinement and light emission in SiO2/Si superlattices

Abstract

PHOTONIC devices are becoming increasingly important in information and communication technologies. But attempts to integrate photonics with silicon-based microelectronics are hampered by the fact that silicon has an indirect band gap, which prevents efficient electron-photon energy conversion. Light-emitting silicon-based materials have been made using band-structure engineering of SiGe and SiC alloys and Si/Ge superlattices, and by exploiting quantum-confinement effects in nanoscale particles and crystallites1–3. The discovery4,5 that silicon can be etched electrochemically into a highly porous form that emits light with a high quantum yield has opened up the latter approach to intensive study6–12. Here we report the fabrication, by molecular-beam epitaxy, of well-defined superlattices of silicon and SiO2, which emit visible light through photoluminescence. We show that this light emission can be explained in terms of quantum confinement of electrons in the two-dimensional silicon layers. These superlattice structures are robust and compatible with standard silicon technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Iyer, S. S. & Xie, Y.-H. Science 260, 40–46 (1993).

    Article  ADS  CAS  Google Scholar 

  2. Abeles, B. & Tiedje, T. Phys. Rev. Lett. 51, 2003–2006 (1983).

    Article  ADS  CAS  Google Scholar 

  3. Wilson, W. L., Szajowski, P. F. & Brus, L. E. Science 262, 1242–1244 (1993).

    Article  ADS  CAS  Google Scholar 

  4. Canham, L. T. Appl. Phys. Lett. 57, 1046–1048 (1990).

    Article  ADS  CAS  Google Scholar 

  5. Cullis, A. G. & Canham, L. T. Nature 353, 335–338 (1991).

    Article  ADS  CAS  Google Scholar 

  6. Lehmann, V. & Gösele, U. Appl. Phys. Lett. 58, 856–858 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Halimaoui, A. et al. Appl. Phys. Lett. 59, 304–306 (1991).

    Article  ADS  CAS  Google Scholar 

  8. Petrova-Koch, V. et al. Appl. Phys. Lett. 61, 943–945 (1992).

    Article  ADS  CAS  Google Scholar 

  9. Proot, J. P., Delerue, C. & Allan, G. Appl. Phys. Lett. 61, 1948–1950 (1992).

    Article  ADS  CAS  Google Scholar 

  10. Van de Walle, C. G. & Northrup, J. E. Phys. Rev. Lett. 70, 1116–1119 (1993).

    Article  ADS  CAS  Google Scholar 

  11. Van Buuren, T. et al. Appl. Phys. Lett. 63, 2911–2914 (1993).

    Article  ADS  CAS  Google Scholar 

  12. Hybertsen, M. S. Phys. Rev. Lett. 72, 1514–1517 (1994).

    Article  ADS  CAS  Google Scholar 

  13. Baribeau, J.-M., Lockwood, D. J. & Lu, Z. H. Mater. Res. Soc. Symp. Proc. Vol. 382 (Materials Research Society, Pittsburg, In the press).

  14. Lu, Z. H. & Yelon, A. Phys. Rev. B41, 3284–3286 (1990).

    Article  CAS  Google Scholar 

  15. Lu, Z. H., Baribeau, J.-M. & Jackman, T. E. Can. J. Phys. 70, 799–802 (1992).

    Article  ADS  CAS  Google Scholar 

  16. Lockwood, D. J. et al. Can. J. Phys. 70, 1184–1193 (1992).

    Article  ADS  CAS  Google Scholar 

  17. Tsu, R. Nature 364, 19 (1993).

    Article  ADS  Google Scholar 

  18. Street, R. A. & Biegelsen, D. K. in The Physics of Hydrogenated Amorphous Silicon (eds Joannopoulos, J. D. & Lucovsky, G.) 195–259 (Springer, Berlin, 1984).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, Z., Lockwood, D. & Baribeau, JM. Quantum confinement and light emission in SiO2/Si superlattices. Nature 378, 258–260 (1995). https://doi.org/10.1038/378258a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/378258a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing