Letter | Published:

Role of SUPERMAN in maintaining Arabidopsis floral whorl boundaries

Nature volume 378, pages 199203 (09 November 1995) | Download Citation

Subjects

Abstract

THE Arabidopsis gene SUPERMAN (SUP) is necessary for the proper spatial development of reproductive floral tissues1–3. Recessive mutations cause extra stamens to form interior to the normal third whorl stamens, at the expense of fourth whorl carpel development1–3. The mutant phenotype is associated with the ectopic expression of the B function genes, AP3 and PI, in the altered floral region, closer to the centre of the flower than in the wild type3, and ap3 sup and pi sup double mutants exhibit a phenotype similar to ap3 and pi single mutants. These findings led to SUP being interpreted as an upstream negative regulator of the B function organ-identity genes, acting in the fourth whorl2,3, to establish a boundary between stamen and carpel whorls. Here we show, using molecular cloning and analysis, that it is expressed in the third whorl and acts to maintain this boundary in developing flowers. The putative SUPERMAN protein contains one zinc-finger and a region resembling a basic leucine zipper motif, suggesting a function in transcriptional regulation.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    et al. Development 112 (suppl.), 157–168 (1991).

  2. 2.

    , & Pl. Cell 3, 1221–1227 (1991).

  3. 3.

    et al. Development 114, 599–615 (1992).

  4. 4.

    , , , & Proc. natn. Acad. Sci. U.S.A. 85, 6856–6860 (1988).

  5. 5.

    , , & Molec gen. Genet. 222, 377–383 (1990).

  6. 6.

    et al. Nature 319, 336–339 (1986).

  7. 7.

    , & EMBO J. 4, 1609–1614 (1985).

  8. 8.

    , & Molec cell. Biol. 13, 7961–7970 (1993).

  9. 9.

    et al. Science 263, 808–811 (1994).

  10. 10.

    & Genes Dev. 7, 491–503 (1993).

  11. 11.

    Pl. Physiol. 100, 1627–1632 (1992).

  12. 12.

    , , & EMBO J. 13, 1403–1413 (1994).

  13. 13.

    , & Pl. Cell 2, 755–767 (1990).

  14. 14.

    , & Cell 65, 991–1002 (1991).

  15. 15.

    , & Cell 68, 683–697 (1992).

  16. 16.

    & Genes Dev. 8, 1548–1560 (1994).

  17. 17.

    , & Cell 76, 703–716 (1994).

  18. 18.

    , & Development 112, 1–20 (1991).

  19. 19.

    & Development (in the press).

  20. 20.

    , & Pl. Cell 7, 333–345 (1995).

  21. 21.

    Cell 76, 781–784 (1994).

  22. 22.

    , & C. r. Acad. Sci., Paris 316, 1194–1199 (1993).

  23. 23.

    , , , & EMBO J. 11, 241–249 (1992).

  24. 24.

    , & Pl. Cell 6, 947–958 (1994).

  25. 25.

    & A. Rev. Biochem. 61, 1053–1095 (1992).

  26. 26.

    et al. Nature 346, 35–39 (1990).

  27. 27.

    & Molec. gen. Genet. 226, 484–490 (1991).

  28. 28.

    , , , & Cell 69, 843–859 (1992).

  29. 29.

    & Plant molec. Biol. 28, 267–279 (1995).

Download references

Author information

Affiliations

  1. Division of Biology, 156-29, California Institute of Technology, Pasadena, California 91125, USA

    • Hajime Sakai
    • , Leonard J. Medrano
    •  & Elliot M. Meyerowitz

Authors

  1. Search for Hajime Sakai in:

  2. Search for Leonard J. Medrano in:

  3. Search for Elliot M. Meyerowitz in:

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/378199a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.