Letter | Published:

Dynamical evidence for a black hole in the eclipsing X-ray nova GRO J1655 – 40

Nature volume 378, pages 157159 (09 November 1995) | Download Citation

Subjects

Abstract

X-RAY novae are binary systems in which a compact object accretes gas from a companion star. In several cases there is good evidence that the compact object is a black hole1–5. The best evidence for the presence of a black hole comes from measuring the orbital velocity of the companion star and thereby determining the minimum mass of the compact object; when this mass exceeds the maximum mass for a neutron star (3 solar masses6), a black hole seems the only remaining possibility. The unusual X-ray nova GRO J1655 - 40 (refs 7-10) is unique because it emits superlumi-nal radio jets, suggesting that it is a low-luminosity counterpart to active galactic nuclei7,9, which are thought to be powered by accretion onto a massive black hole. Here we report observations of the optical counterpart10 of GRO J1655 - 40, which show that the system undergoes periodic eclipses; the edge-on geometry thus implied allows a determination of the companion star's true velocity. The mass of the compact object derived from the velocity curve is at least 3.16 ±0.15 solar masses, which strongly supports its identification as a black hole.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & Astrophys. J. 308, 110–122 (1986).

  2. 2.

    , & Nature 355, 614–617 (1992).

  3. 3.

    , & Astrophys. J. 399, L145–L149 (1992).

  4. 4.

    , , & Astrophys. J. (in the press).

  5. 5.

    & IAU Circ. No. 2498 (1995).

  6. 6.

    & Astrophys. J. 207, 592–600 (1976).

  7. 7.

    et al. Nature 374, 141–143 (1995).

  8. 8.

    et al. Nature 374, 704–706 (1995).

  9. 9.

    & Nature 375, 464–468 (1995).

  10. 10.

    et al. Nature 374, 701–703 (1995).

  11. 11.

    Astrophys. J. 391, 298–305 (1992).

  12. 12.

    et al. Astrophys. J. 441, 785–799 (1995).

  13. 13.

    , , & Astrophys. J. 350, 288–294 (1990).

  14. 14.

    Mon. Not. R. astr. Soc. 213, 129–141 (1985).

  15. 15.

    & Astr. J. 84, 1511–1525 (1979).

  16. 16.

    , & Mon. Not. R. astr. Soc. (in the press).

  17. 17.

    & Astrophys. J. Suppl. Ser. 33, 415–436 (1978).

  18. 18.

    Publs astr. Soc. Pacif. 94, 715–721 (1982).

  19. 19.

    & Astrophys. J. 191, 483–491 (1974).

  20. 20.

    , & Mon. Not. R. astr. Soc. 266, 137–154 (1994).

  21. 21.

    , , , & Astrophys. J. 436, 848–858 (1994).

  22. 22.

    in Interacting Binary Stars (eds Eggleton, P. P. & Pringle, J. E.) 367–392 (NATO ASI Ser., Reidel, Dordrecht, 1985).

Download references

Author information

Affiliations

  1. Department of Astronomy, Yale University, PO Box 208101, New Haven, Connecticut 06520, USA

    • Charles D. Bailyn
    •  & Jerome A. Orosz
  2. Harvard/Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138, USA

    • Jeffrey E. McClintock
  3. MIT Center for Space Research, Rm 37-595, Cambridge, Massachusetts 02139, USA

    • Ronald A. Remillard

Authors

  1. Search for Charles D. Bailyn in:

  2. Search for Jerome A. Orosz in:

  3. Search for Jeffrey E. McClintock in:

  4. Search for Ronald A. Remillard in:

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/378157a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.