Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mechanosensory signalling in C. elegans mediated by the GLR-1 glutamate receptor

An Erratum to this article was published on 22 February 1996


NEURONAL signalling across synapses involves activation of many neurotransmitter receptors on postsynaptic cells, glr-1 encodes a potential glutamate receptor in the nematode Caenorhabditis elegans which is most similar to vertebrate AMPA-type ionotropic glutamate receptors1, glr-1 is expressed in motor neurons and inter-neurons, including interneurons implicated in the control of locomotion2. Here we investigate the contribution of glr-1 to the normal signalling of these neurons, by generating a deletion mutation in glr-1. We find that mutant worms are deficient in their ability to withdraw backwards when mechanically stimulated, but they withdraw normally in response to chemical repellents. The ASH sensory neurons mediate withdrawal responses both to mechanical stimuli and to chemical repellents3,4, and ASH makes chemical synapses with glr-1-expressing interneurons. Our results suggest that postsynaptic interneurons use different neurotransmitter receptors to process two sensory stimuli detected by one sensory neuron.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Hollmann, M. & Heinemann, S. A. Rev. Neurosci. 17, 31–108 (1994).

    CAS  Article  Google Scholar 

  2. 2

    Chalfie, M. et al. J. Neurosci. 5, 956–964 (1985).

    CAS  Article  Google Scholar 

  3. 3

    Kaplan, J. & Horvitz, H. Proc. natn. Acad. Sci. U.S.A. 90, 2227–2231 (1993).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Bargmann, C., Thomas, J. & Horvitz, H. Cold Spring Harb. Symp. quant. Biol. 55, 529–538 (1990).

    CAS  Article  Google Scholar 

  5. 5

    Keinanen, K. et al. Science 249, 556–560 (1990).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Boulter, J. et al. Science 249, 1033–1037 (1990).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Ultsch, A. et al. Proc. natn. Acad. Sci. U.S.A. 89, 10484–10488 (1992).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Darlison, M. G., Hutton, M. L. & Harvey, R. J. in Exs 63: Comparative Molecular Neurobiology (ed. Pichon, Y.) 48–64 (Birkhäuser, Basel, 1993).

    Book  Google Scholar 

  9. 9

    Stern-Bach, Y. et al. Neuron 13, 1345–1357 (1994).

    CAS  Article  Google Scholar 

  10. 10

    Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. & Prasher, D. Science 263, 802–805 (1994).

    ADS  CAS  Article  Google Scholar 

  11. 11

    Driscoll, M. & Chalfie, M. Nature 349, 588–593 (1991).

    ADS  CAS  Article  Google Scholar 

  12. 12

    Canessa, C. M., Harisberger, J. D. & Rossier, B. C. Nature 361, 467–470 (1993).

    ADS  CAS  Article  Google Scholar 

  13. 13

    Zwaal, R. R., Broeks, A., van Meurs, J., Groenen, J. T., & Plasterk, R. H. Proc. natn. Acad. Sci. U.S.A. 90, 7431–7435 (1993).

    ADS  CAS  Article  Google Scholar 

  14. 14

    White, J. G., Southgate, E., Thomson, J. N. & Brenner, S. Phil. Trans. Soc. Lond. B 314, 1–340 (1986).

    ADS  CAS  Article  Google Scholar 

  15. 15

    Chalfie, M. & Wolinsky, E. Nature 345, 410–416 (1990).

    ADS  CAS  Article  Google Scholar 

  16. 16

    Hart, A. C., Sims, S., Kaplan, J. M. Nature, 378, 82–85 (1995).

    ADS  CAS  Article  Google Scholar 

  17. 17

    Verrall, S. & Hall, Z. W. Cell 68, 23–31 (1992).

    CAS  Article  Google Scholar 

  18. 18

    Culotti, J. G. & Russell, R. L. Genetics 90, 243–256 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    O'Malley, D. M., Sandell, J. H. & Masland, R. H. J. Neurosci. 12, 1394–1408 (1992).

    CAS  Article  Google Scholar 

  20. 20

    DeVries, S. H. & Baylor, D. A. Cell/Neuron 72/10 (suppl.), 139–149 (1993).

    Google Scholar 

  21. 21

    Schotland, J. et al. Nature 374, 266–268 (1995).

    ADS  CAS  Article  Google Scholar 

  22. 22

    Church, P. J., Whim, M. D. & Lloyd, P. E. J. Neurosci. 13, 2790–800 (1993).

    CAS  Article  Google Scholar 

  23. 23

    Bochet, P. et al. Neuron 12, 383–388 (1994).

    CAS  Article  Google Scholar 

  24. 24

    Jonas, P., Racca, C., Sakmann, B., Seeburg, P. H. & Monyer, H. Neuron 12, 1281–1289 (1994).

    CAS  Article  Google Scholar 

  25. 25

    Hollman, M., Maron, C. & Heinemann, S. Neuron 13, 1331–1343 (1994).

    Article  Google Scholar 

  26. 26

    Wilson, R. et al. Nature 368, 32–38 (1994).

    ADS  CAS  Article  Google Scholar 

  27. 27

    Barstead, R. J. & Waterston, R. H. J. biol. Chem. 264, 10177–10185 (1989).

    CAS  Google Scholar 

  28. 28

    Krause, M. & Hirsh, D. I. Cell 49, 753–761 (1987).

    CAS  Article  Google Scholar 

  29. 29

    Devereaux, J., Haeberli, P. & Smithies, O. Nucleic Acids Res. 12, 387–395 (1984).

    Article  Google Scholar 

  30. 30

    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. J. molec. Biol. 215, 403–410 (1990).

    CAS  Article  Google Scholar 

  31. 31

    Fire, A., White-Harrison, S. & Dixon, D. Gene 93, 189–198 (1990).

    CAS  Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Maricq, A., Peckol, E., Driscoll, M. et al. Mechanosensory signalling in C. elegans mediated by the GLR-1 glutamate receptor. Nature 378, 78–81 (1995).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links