Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons

Abstract

SYNCHRONIZATION of neuronal activity is fundamental in the operation of cortical networks1. With respect to an ongoing synchronized oscillation, the precise timing of action potentials is an attractive candidate mechanism for information coding2–5. Networks of inhibitory interneurons have been proposed to have a role in entraining cortical, synchronized 40-Hz activity6,7. Here we demonstrate that individual GABAergic interneurons8 can effectively phase spontaneous firing and subthreshold oscillations in hippocampal pyramidal cells at θ frequencies (4–7 Hz). The efficiency of this entrainment is due to interaction of GABAA-receptor-mediated hyperpolarizing synaptic events with intrinsic oscillatory mechanisms tuned to this frequency range in pyramidal cells. Moreover, this GABAergic mechanism is sufficient to synchronize the firing of pyramidal cells. Thus, owing to the divergence of each GABAergic interneuron9,10, more than a thousand pyramidal cells may share a common temporal reference established by an individual interneuron.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Singer, W. A. Rev. Physiol. 55, 349–374 (1993).

    Article  CAS  Google Scholar 

  2. Mainen, Z. F. & Sejnowski, T. J. Science 268, 1503–1506 (1995).

    Article  ADS  CAS  Google Scholar 

  3. O'Keefe, J. & Recce, M. L. Hippocampus 3, 317–330 (1993).

    Article  CAS  Google Scholar 

  4. Lisman, J. E. & Idiart, M. A. P. Science 267, 1512–1515 (1995).

    Article  ADS  CAS  Google Scholar 

  5. Hopfield, J. J. Nature 376, 33–36 (1995).

    Article  ADS  CAS  Google Scholar 

  6. Lytton, W. W. & Sejnowski, T. J. J. Neurophysiol. 66, 1059–1079 (1991).

    Article  CAS  Google Scholar 

  7. Whittington, M. A., Traub, R. D. & Jefferys, J. G. R. Nature 373, 612–615 (1995).

    Article  ADS  CAS  Google Scholar 

  8. Buhl, E. H., Halasy, K. & Somogyi, P. Nature 368, 823–828 (1994).

    Article  ADS  CAS  Google Scholar 

  9. Li, X. G., Somogyi, P., Tepper, J. M. & Buzsaki, G. Expl. Brain Res. 90, 519–525 (1992).

    Article  CAS  Google Scholar 

  10. Sik, A., Penttonen, M., Ylinen, A. & Buzsáki, G. J. Neurosci. (in the press).

  11. Niedermeyer, E. & Lopes da Silva, F. Electroencephalography: Basic Principles, Clinical Applications, and Related Fields (Williams & Wilkins, Baltimore, 1993).

    Google Scholar 

  12. Vanderwolf, C. H. Electroencephalogr. clin. Neurophysiol. 26, 407–418 (1969).

    Article  CAS  Google Scholar 

  13. Leung, L. W. & Yim, C. Y. Brain Res. 553, 261–274 (1991).

    Article  CAS  Google Scholar 

  14. Fox, S. E. Expl. Brain Res. 77, 283–294 (1989).

    Article  CAS  Google Scholar 

  15. Soltesz, I. & Deschenes, M. J. Neurophysiol. 70, 97–116 (1993).

    Article  CAS  Google Scholar 

  16. Ylinen, A. et al. Hippocampus 5, 79–90 (1995).

    Article  Google Scholar 

  17. Kandel, E. R. & Spencer, W. A. J. Neurophysiol. 24, 243–259 (1961).

    Article  CAS  Google Scholar 

  18. Alonso, A. & Llinas, R. R. Nature 342, 175–177 (1989).

    Article  ADS  CAS  Google Scholar 

  19. Llinas, R. R. Science 242, 1654–1664 (1988).

    Article  ADS  CAS  Google Scholar 

  20. Freund, T. F. & Antal, M. Nature 336, 170–173 (1988).

    Article  ADS  CAS  Google Scholar 

  21. Gulyas, A. I. et al. Nature 366, 683–687 (1993).

    Article  ADS  CAS  Google Scholar 

  22. Andersen, P., Eccles, J. C. & Løyning, Y. Nature 198, 540–542 (1963).

    Article  ADS  CAS  Google Scholar 

  23. Andersen, P. & Eccles, J. Nature 196, 645–647 (1962).

    Article  ADS  CAS  Google Scholar 

  24. Mody, I., De Koninck, Y., Otis, T. S. & Soltesz, I. Trends Neurosci. 17, 517–525 (1994).

    Article  CAS  Google Scholar 

  25. Somogyi, P. in Neural Mechanisms of Visual Perception (eds Lam, D. M.-K. & Gilbert, C. D.) 35–62 (Portfolio, The Woodlands, Texas, 1989).

    Google Scholar 

  26. Ylinen, A. et al. J. Neurosci. 15, 30–46 (1995).

    Article  CAS  Google Scholar 

  27. Steriade, M., Nunez, A. & Amzica, F. J. Neurosci. 13, 3252–3265 (1993).

    Article  CAS  Google Scholar 

  28. Ginsborg, B. L. Biochim. biophys. Acta 300, 289–317 (1973).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cobb, S., Buhl, E., Halasy, K. et al. Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons. Nature 378, 75–78 (1995). https://doi.org/10.1038/378075a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/378075a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing