Letter | Published:

Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons

Nature volume 378, pages 7578 (02 November 1995) | Download Citation

Subjects

Abstract

SYNCHRONIZATION of neuronal activity is fundamental in the operation of cortical networks1. With respect to an ongoing synchronized oscillation, the precise timing of action potentials is an attractive candidate mechanism for information coding2–5. Networks of inhibitory interneurons have been proposed to have a role in entraining cortical, synchronized 40-Hz activity6,7. Here we demonstrate that individual GABAergic interneurons8 can effectively phase spontaneous firing and subthreshold oscillations in hippocampal pyramidal cells at θ frequencies (4–7 Hz). The efficiency of this entrainment is due to interaction of GABAA-receptor-mediated hyperpolarizing synaptic events with intrinsic oscillatory mechanisms tuned to this frequency range in pyramidal cells. Moreover, this GABAergic mechanism is sufficient to synchronize the firing of pyramidal cells. Thus, owing to the divergence of each GABAergic interneuron9,10, more than a thousand pyramidal cells may share a common temporal reference established by an individual interneuron.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    A. Rev. Physiol. 55, 349–374 (1993).

  2. 2.

    & Science 268, 1503–1506 (1995).

  3. 3.

    & Hippocampus 3, 317–330 (1993).

  4. 4.

    & Science 267, 1512–1515 (1995).

  5. 5.

    Nature 376, 33–36 (1995).

  6. 6.

    & J. Neurophysiol. 66, 1059–1079 (1991).

  7. 7.

    , & Nature 373, 612–615 (1995).

  8. 8.

    , & Nature 368, 823–828 (1994).

  9. 9.

    , , & Expl. Brain Res. 90, 519–525 (1992).

  10. 10.

    , , & J. Neurosci. (in the press).

  11. 11.

    & Electroencephalography: Basic Principles, Clinical Applications, and Related Fields (Williams & Wilkins, Baltimore, 1993).

  12. 12.

    Electroencephalogr. clin. Neurophysiol. 26, 407–418 (1969).

  13. 13.

    & Brain Res. 553, 261–274 (1991).

  14. 14.

    Expl. Brain Res. 77, 283–294 (1989).

  15. 15.

    & J. Neurophysiol. 70, 97–116 (1993).

  16. 16.

    et al. Hippocampus 5, 79–90 (1995).

  17. 17.

    & J. Neurophysiol. 24, 243–259 (1961).

  18. 18.

    & Nature 342, 175–177 (1989).

  19. 19.

    Science 242, 1654–1664 (1988).

  20. 20.

    & Nature 336, 170–173 (1988).

  21. 21.

    et al. Nature 366, 683–687 (1993).

  22. 22.

    , & Nature 198, 540–542 (1963).

  23. 23.

    & Nature 196, 645–647 (1962).

  24. 24.

    , , & Trends Neurosci. 17, 517–525 (1994).

  25. 25.

    in Neural Mechanisms of Visual Perception (eds Lam, D. M.-K. & Gilbert, C. D.) 35–62 (Portfolio, The Woodlands, Texas, 1989).

  26. 26.

    et al. J. Neurosci. 15, 30–46 (1995).

  27. 27.

    , & J. Neurosci. 13, 3252–3265 (1993).

  28. 28.

    Biochim. biophys. Acta 300, 289–317 (1973).

Download references

Author information

Affiliations

  1. MRC Anatomical Neuropharmacology Unit, University Department of Pharmacology, Mansfield Road, Oxford 0X1 3TH, UK

    • S. R. Cobb
    • , E. H. Buhl
    • , K. Halasy
    • , O. Paulsen
    •  & P. Somogyi
  2. Department of Zoology & Cell Biology, Jozsef Attila University, Szeged H-6722, Hungary

    • K. Halasy

Authors

  1. Search for S. R. Cobb in:

  2. Search for E. H. Buhl in:

  3. Search for K. Halasy in:

  4. Search for O. Paulsen in:

  5. Search for P. Somogyi in:

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/378075a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.