Abstract
SYNCHRONIZATION of neuronal activity is fundamental in the operation of cortical networks1. With respect to an ongoing synchronized oscillation, the precise timing of action potentials is an attractive candidate mechanism for information coding2–5. Networks of inhibitory interneurons have been proposed to have a role in entraining cortical, synchronized 40-Hz activity6,7. Here we demonstrate that individual GABAergic interneurons8 can effectively phase spontaneous firing and subthreshold oscillations in hippocampal pyramidal cells at θ frequencies (4–7 Hz). The efficiency of this entrainment is due to interaction of GABAA-receptor-mediated hyperpolarizing synaptic events with intrinsic oscillatory mechanisms tuned to this frequency range in pyramidal cells. Moreover, this GABAergic mechanism is sufficient to synchronize the firing of pyramidal cells. Thus, owing to the divergence of each GABAergic interneuron9,10, more than a thousand pyramidal cells may share a common temporal reference established by an individual interneuron.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Closed-loop direct control of seizure focus in a rodent model of temporal lobe epilepsy via localized electric fields applied sequentially
Nature Communications Open Access 17 December 2022
-
Simultaneous transcranial electrical and magnetic stimulation boost gamma oscillations in the dorsolateral prefrontal cortex
Scientific Reports Open Access 12 November 2022
-
The GABAA receptor modulator zolpidem augments hippocampal-prefrontal coupling during non-REM sleep
Neuropsychopharmacology Open Access 18 June 2022
Access options
Subscribe to Journal
Get full journal access for 1 year
$199.00
only $3.90 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Buy article
Get time limited or full article access on ReadCube.
$32.00
All prices are NET prices.
References
Singer, W. A. Rev. Physiol. 55, 349–374 (1993).
Mainen, Z. F. & Sejnowski, T. J. Science 268, 1503–1506 (1995).
O'Keefe, J. & Recce, M. L. Hippocampus 3, 317–330 (1993).
Lisman, J. E. & Idiart, M. A. P. Science 267, 1512–1515 (1995).
Hopfield, J. J. Nature 376, 33–36 (1995).
Lytton, W. W. & Sejnowski, T. J. J. Neurophysiol. 66, 1059–1079 (1991).
Whittington, M. A., Traub, R. D. & Jefferys, J. G. R. Nature 373, 612–615 (1995).
Buhl, E. H., Halasy, K. & Somogyi, P. Nature 368, 823–828 (1994).
Li, X. G., Somogyi, P., Tepper, J. M. & Buzsaki, G. Expl. Brain Res. 90, 519–525 (1992).
Sik, A., Penttonen, M., Ylinen, A. & Buzsáki, G. J. Neurosci. (in the press).
Niedermeyer, E. & Lopes da Silva, F. Electroencephalography: Basic Principles, Clinical Applications, and Related Fields (Williams & Wilkins, Baltimore, 1993).
Vanderwolf, C. H. Electroencephalogr. clin. Neurophysiol. 26, 407–418 (1969).
Leung, L. W. & Yim, C. Y. Brain Res. 553, 261–274 (1991).
Fox, S. E. Expl. Brain Res. 77, 283–294 (1989).
Soltesz, I. & Deschenes, M. J. Neurophysiol. 70, 97–116 (1993).
Ylinen, A. et al. Hippocampus 5, 79–90 (1995).
Kandel, E. R. & Spencer, W. A. J. Neurophysiol. 24, 243–259 (1961).
Alonso, A. & Llinas, R. R. Nature 342, 175–177 (1989).
Llinas, R. R. Science 242, 1654–1664 (1988).
Freund, T. F. & Antal, M. Nature 336, 170–173 (1988).
Gulyas, A. I. et al. Nature 366, 683–687 (1993).
Andersen, P., Eccles, J. C. & Løyning, Y. Nature 198, 540–542 (1963).
Andersen, P. & Eccles, J. Nature 196, 645–647 (1962).
Mody, I., De Koninck, Y., Otis, T. S. & Soltesz, I. Trends Neurosci. 17, 517–525 (1994).
Somogyi, P. in Neural Mechanisms of Visual Perception (eds Lam, D. M.-K. & Gilbert, C. D.) 35–62 (Portfolio, The Woodlands, Texas, 1989).
Ylinen, A. et al. J. Neurosci. 15, 30–46 (1995).
Steriade, M., Nunez, A. & Amzica, F. J. Neurosci. 13, 3252–3265 (1993).
Ginsborg, B. L. Biochim. biophys. Acta 300, 289–317 (1973).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Cobb, S., Buhl, E., Halasy, K. et al. Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons. Nature 378, 75–78 (1995). https://doi.org/10.1038/378075a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/378075a0
This article is cited by
-
Simultaneous transcranial electrical and magnetic stimulation boost gamma oscillations in the dorsolateral prefrontal cortex
Scientific Reports (2022)
-
The GABAA receptor modulator zolpidem augments hippocampal-prefrontal coupling during non-REM sleep
Neuropsychopharmacology (2022)
-
Comparison of non-invasive, scalp-recorded auditory steady-state responses in humans, rhesus monkeys, and common marmosets
Scientific Reports (2022)
-
Closed-loop direct control of seizure focus in a rodent model of temporal lobe epilepsy via localized electric fields applied sequentially
Nature Communications (2022)
-
The role of inhibitory circuits in hippocampal memory processing
Nature Reviews Neuroscience (2022)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.