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SUMMARY: The peroxisome proliferator-activated receptor-� (PPAR�) high-affinity ligand, 15-deoxy-�-12,14-PGJ2 (15d-PGJ2),
is toxic to malignant cells through cell cycle arrest and apoptosis induction. In this study, we investigated the effects of 15d-PGJ2
on apoptosis induction and expression of apoptosis-related proteins in hepatocellular carcinoma (HCC) cells. 15d-PGJ2 induced
apoptosis in SK-Hep1 and HepG2 cells at a 50 �M concentration. Pretreatment with the pan-caspase inhibitor,
benzyloxycarbonyl-Val-Ala-Asp (OMe) fluoromethyl ketone (2-VAD-fmk), only partially blocked apoptosis induced by 40 �M

15d-PGJ2. This indicated that 15d-PGJ2 induction of apoptosis was associated with a caspase-3–independent pathway.
15d-PGJ2 also induced down-regulation of the X chromosome-linked inhibitor of apoptosis (XIAP), Bclx, and apoptotic
protease-activating factor-1 in SK-Hep1 cells but not in HepG2 cells. However, 15d-PGJ2 sensitized both HCC cell lines to
TNF-related apoptosis-induced ligand–induced apoptosis. In SK-Hep1 cells, cell toxicity, nuclear factor-�B (NF-�B) suppression,
and XIAP down-regulation were induced by 15d-PGJ2 treatment under conditions in which PPAR� was down-regulated. These
results suggest that the effect of 15d-PGJ2 was through a PPAR�-independent mechanism. Although cell toxicity was induced
when PPAR� was down-regulated in HepG2 cells, NF-�B suppression and XIAP down-regulation were not induced. In
conclusion, 15d-PGJ2 induces apoptosis of HCC cell lines via caspase-dependent and -independent pathways. In SK-Hep1 cells,
the ability of 15d-PGJ2 to induce cell toxicity, NF-�B suppression, or XIAP down-regulation seemed to occur via a
PPAR�-independent mechanism, but in HepG2 cells, NF-�B suppression by 15d-PGJ2 was dependent on PPAR�. (Lab Invest
2003, 83:1529–1539).

15-deoxy-�-12,14-PGJ2 (15d-PGJ2) is a prosta-
glandin J2 (PGJ2) derivative and is a high-affinity
ligand selective for peroxisome proliferator-activated
receptor-� (PPAR�) (Forman et al, 1995). 15d-PGJ2
activates PPAR�, which is functionally associated with
adipocyte development (Forman et al, 1995), adipo-
cyte differentiation (Kliewer et al, 1995), and inhibition
of inducible nitric oxide synthesis in macrophages
(Ricote et al, 1998). Through these physiologic ac-
tions, 15d-PGJ2 contributes to the maintenance of
tissue homeostasis.
Recently, it was reported that PPAR� is expressed

in malignant cells and that ligand activation affects
malignant cell proliferation and growth (Brockman et
al, 1998; Chang and Szabo, 2000; Keelan et al, 1999;
Motomura et al, 2000; Okano et al, 2002; Rumi et al,
2001; Sarraf et al, 1998; Tsubouchi et al, 2000). In
malignant cells, activation of PPAR� induces cell cycle

arrest (Brockman et al, 1998; Clay et al, 2001; Koga et
al, 2001; Motomura et al, 2000; Rumi et al, 2001), cell
differentiation (Chang and Szabo, 2000; Sarraf et al,
1998), or apoptosis (Keelan et al, 1999). These results
imply that the PPAR� activation pathway may be a
possible intervention mode for treatment of hepato-
cellular carcinomas (HCCs), which are resistant to
current treatments.
PPAR� contributes to regulation of gene transcrip-

tion in cells. In particular, activated PPAR� inhibits
nuclear factor-�B (NF-�B) activity (Chinetti et al, 1998;
Chung et al, 2000; Ji et al, 2001; Petrova et al, 1999;
Ricote et al, 1998), which is associated with cell
survival. In macrophages, PPAR� activation induces
apoptosis by interfering with the antiapoptotic NF-�B
signaling pathway (Chinetti et al, 1998; Ricote et al,
1998). NF-�B also regulates apoptosis-related gene
expression and induces apoptosis-related protein ex-
pression in cells (Bui et al, 2001; Foehr et al, 2000;
Kreuz et al, 2001; Micheau et al, 2001; Tamatani et al,
1999; Yabe et al, 2001; Yang et al, 2000), contributing
to oncogenesis and tumor escape from immune sur-
veillance (Dhanalakshmi et al, 2002; Hiscott et al,
2001; Javeland et al, 2002; Tan and Waldmann, 2002).
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The fact that the PPAR� ligand is a regulator of NF-�B
activation implies an important association between
cell apoptosis induction and PPAR� activation. How-
ever, few studies describe a relationship between
PPAR� activation and apoptotic-related protein ex-
pression (Ohta et al, 2001), particularly in gastrointes-
tinal malignant tumor cells (Toyoda et al, 2002).
In this study, we investigated the effect of 15d-PGJ2

on induction of apoptosis and apoptosis-related pro-
teins in human HCC cells. We examined potential
mechanisms by which 15d-PGJ2 induces apoptosis
and increases expression of intracellular apoptosis-
related proteins.

Results

The 15d-PGJ2 PPAR� Ligand Induces HCC Cell Apoptosis

We previously showed that PPAR� is prevalent in
human HCC cells (Okano et al, 2002). In the current
study, we investigated the effect of 15d-PGJ2 on the
viability of SK-Hep1 and HepG2 HCC cells (Fig. 1a).
As expected, 10 �M 15d-PGJ2 failed to induce signif-
icant cytotoxicity in HCC cells after 24-hour incuba-
tion. However, 50 �M 15d-PGJ2 did induce effective
cell death in SK-Hep1 cells. HepG2 cell viability also
was decreased by 50 �M 15d-PGJ2, although its
cytotoxic effect was less than that in SK-Hep1 cells.

We used 4'6-diamidino-2-phenylindole (DAPI) stain-
ing to evaluate whether HCC cells undergo apoptosis
when treated with 50 �M 15d-PGJ2. Untreated control
cells did not show any typical apoptotic features (Fig.
1, b and d). In contrast, HCC cells treated with 50 �M

15d-PGJ2 showed typical apoptotic features (Fig. 1, c
and e). To verify cellular apoptosis, we used FITC-
conjugated anti-annexin V antibody to evaluate the
extent of phosphatidylserine translocation to the cell
surface, such as would occur during apoptosis (Fig. 1,
f to i). Untreated control cells did not show cell surface
staining, whereas cells treated with 50 �M 15d-PGJ2
showed cell surface staining of the anti-annexin V
antibody, indicative of surface membrane phosphati-
dylserine expression.

15d-PGJ2 Induces Apoptosis Via Caspase-3 and
Caspase-3 Independent Pathways

PPAR� is a nuclear hormone receptor controlling gene
transcription and regulating expression of cell cycle
proteins in malignant cells through apoptosis induc-
tion (Koga et al, 2001; Motomura et al, 2000). It is
reported that PPAR� activation can enhance apopto-
sis induced by TNF family receptor stimulation (Goke
et al, 2000; Ji et al, 2001; Okano et al, 2002). Hence,
we speculated that PPAR� activation might result in
activation of the caspase cascade, and we examined

Figure 1.
a, Effect of 15-deoxy-�-12,14-PGJ2 (15d-PGJ2) stimulation on human hepatocellular carcinoma (HCC) cells (SK-Hep1: solid bars; HepG2: open bars). Cells were
incubated with 15d-PGJ2 for 24 hours at the indicated concentrations. Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide
(MTT) assay. Data shown are the mean � SD of five independent experiments. b to e, 4'6-Diamidino-2-phenylindole (DAPI) staining was used to evaluate apoptosis
in control, untreated SK-Hep1 (b) and HepG2 cells (d) as well as after 15d-PGJ2 treatment (50 �M) of SK-Hep1 (c) and HepG2 (e) cells. Incubation of 50 �M 15d-PGJ2
induced typical apoptosis features, including nuclear condensation and nuclear fragmentation. f to i, HCC cells were stained with FITC-conjugated anti-annexin V
antibody and propidium iodide after incubation in the absence or presence of 50 �M 15d-PGJ2 for 12 hours. Without 15d-PGJ2, both SK-Hep1 (f) and HepG2 cells
(h) showed only cell nuclei staining. After incubation with 15d-PGJ2, cell surface staining with FITC-conjugated anti-annexin V antibody was observed on both SK-Hep1
(g) and HepG2 (i).
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the expression of apoptosis-related proteins after
15d-PGJ2 treatment. Caspase-3 expression was de-
tected in both SK-Hep1 and HepG2 cells before
treatment, and incubation with 50 �M 15d-PGJ2 re-
sulted in reduced caspase-3 protein expression in
SK-Hep1 cells (Fig. 2a). Because the anti-caspase-3
antibody does not recognize cleaved caspase-3, the
observed reduction is a result of cleavage and activa-
tion of caspase-3 after 15d-PGJ2 treatment. In con-
trast, no change in caspase-3 expression was ob-
served in HepG2 cells after 50 �M 15d-PGJ2
treatment.
It was possible that a caspase-independent mech-

anism contributed to the apoptosis induced by 15d-
PGJ2 in HCC cells because HepG2 cells underwent
apoptosis without apparent activation of caspase-3.
Therefore, we investigated the effect of pretreatment
with the pan-caspase inhibitor, benzyloxycarbonyl-
Val-Ala-Asp (OMe) fluoromethyl ketone (Z-VAD-fmk),
on 15d-PGJ2-induced apoptosis. We observed that
40 �M Z-VAD-fmk partially blocked the ability of 15d-
PGJ2 to induce apoptosis in HCC cells (Fig. 2b), but
this was incomplete and the inhibitor did not com-
pletely block the apoptosis.

15d-PGJ2 Induces Down-Regulation of Other
Apoptosis-Related Proteins

The previous data showed that apoptosis induction by
15d-PGJ2 was partially associated with activation of
caspase-3, the terminal enzyme of the caspase cas-
cade, suggesting that PPAR� activation might modu-

late other apoptosis-related proteins. Expression of
the X chromosome-linked inhibitor of apoptosis
(XIAP), Bclx, apoptotic protease-activating factor-1
(Apaf-1), and FLICE/caspase-8-inhibitory protein
(FLIP), were analyzed by Western blotting (Fig. 3).
XIAP protein expression in HCC cells was evaluated
because XIAP is a principal inhibitor of active
caspase-3 in human HCC (Shiraki et al, 2002). We
found that XIAP expression decreased in SK-Hep1
cells after 50 �M 15d-PGJ2 incubation, whereas no
change was observed in HepG2 cells (Fig. 3).
It is also known that XIAP interacts with processed

caspase-9 and inhibits apoptosis (Silke et al, 2002).
Caspase-9, which can activate several downstream
caspases, including caspase-3, is induced by autoac-
tivation via the Apaf-1/cytochrome c complex. Cyto-
chrome c is released from mitochondria, and Bcl-2
family members, including Bclx, are principal regula-
tors of the mitochondria-initiated caspase activation
pathway (Shiraki et al, 2002). Hence, we examined
expression of Bclx and Apaf-1 after treatment of HCC
cells with15d-PGJ2 (Fig. 3). Expression of Bclx was
slightly down-regulated by 50 �M 15d-PGJ2 in SK-
Hep1 cells, with no change in expression in HepG2
cells. Apaf-1 also was down-regulated by 50 �M

15d-PGJ2 in SK-Hep1 cells, and a 17-kDa fragment
was observed, probably as a result of degradation by
caspase-3 (Lauber et al, 2001). However, Apaf-1 was

Figure 2.
a, Expression of caspase-3 determined by Western blotting. SK-Hep1 and
HepG2 cells were incubated in the presence or absence of 50 �M 15d-PGJ2 for
24 hours at 37° C. Arrows indicate the expression of caspase-3 (32 kDa). b,
Restoration of cell viability by benzyloxycarbonyl-Val-Ala-Asp (OMe) fluorom-
ethyl ketone (Z-VAD-fmk) pretreatment of HCC cells (SK-Hep1, solid bars;
HepG2, open bars). Z-VAD-fmk pretreatment followed by 15d-PGJ2 incubation
partially restored cell viabilities as compared with 15d-PGJ2 alone.

Figure 3.
Expression of the X chromosome-linked inhibitor of apoptosis (XIAP), Bclx,
apoptotic protease-activating factor-1 (Apaf-1), FLICE/caspase-8-inhibitory
protein (FLIP), or proliferator-activated receptor-� (PPAR�) determined by
Western blotting. SK-Hep1 and HepG2 cells were incubated in the presence or
absence of 50 �M 15d-PGJ2 for 24 hours at 37° C. Open arrow indicates XIAP,
solid arrow indicates uncleaved Apaf-1 (130 kDa), and solid arrowhead
indicates cleaved Apaf-1 (17 kDa) fragment.
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not down-regulated in treated HepG2 cells, nor was
the 17-kDa fragment observed.
FLIP, which acts near the beginning of the caspase

cascade and inhibits formation of the death-inducing
signal complex (Shiraki et al, 2002), slightly decreased
in SK-Hep1 cells, but increased in HepG2 cells after
15d-PGJ2 treatment. The expression of PPAR� was
down-regulated in both HCC cell lines (Fig. 3).

15d-PGJ2 Enhances TNF-related apoptosis-induced ligand
(TRAIL)–Induced Apoptosis in HCC Cells

As shown above, 15d-PGJ2 seemed to influence
apoptosis-related protein expression in HCC cells.
Bclx and Apaf-1 are associated with apoptosis induc-
tion via a mitochondrial pathway (Tsujimoto and
Shimizu, 2000; Zou et al, 1997), and a recent study
revealed that the mitochondrial pathway is an impor-
tant determinant for apoptosis of tumor cells by TRAIL
(Thomas et al, 2000). Therefore, we examined the
effect of 15d-PGJ2 on TRAIL-induced apoptosis of
HCC cells (Fig. 4). TRAIL treatment alone (100 ng/ml)
had a minimal effect on SK-Hep1 and HepG2 cells. In
contrast, both HCC cell lines were effectively killed
with 50 �M 15d-PGJ2, and the rate of cell death was
enhanced by costimulation with TRAIL and 15d-PGJ2.

15d-PGJ2 Suppressed NF-�B Activation and Induced
Down-Regulation of XIAP Expression in HCC Cells

Because PPAR� activation inhibits NF-�B activity
(Chinetti et al, 1998; Chung et al, 2000; Ji et al, 2001;
Petrova et al, 1999; Ricote et al, 1998), we examined
the effect of 15d-PGJ2 on NF-�B activation in HCC
cells. In SK-Hep1 and HepG2 cells, treatment with 50
ng/ml TNF-� effectively induced NF-�B activation
after 8-hour incubation and 15d-PGJ2 treatment at-
tenuated its activation (Fig. 5). This suppression of
NF-�B activation by 15d-PGJ2 was greater in SK-
Hep1 cells than in HepG2 cells.

Since there was no change in XIAP expression in
HepG2 cells (Fig. 3), it was possible that insufficient
inhibition of NF-�B activation might be a contributing
factor. To further analyze XIAP regulation, we trans-
fected HCC cells with an I�B� expression vector and
the cells were tested for inhibition of NF-�B activation
(Fig. 5b). NF-�B activation was suppressed in the
transfected cells, and there was reduced XIAP expres-
sion in both SK-Hep1 cells and HepG2 cells. There
was no corresponding change in Bclx or caspase-3
expression, suggesting that inhibition of NF-�B acti-
vation by overexpressing I�B� selectively affected
XIAP down-regulation in HCC cells.

15d-PGJ2 Effects on HCC Viability Are Independent of
PPAR� Pathways

Previously, 15d-PGJ2 was thought to exert its effects
on cells exclusively through PPAR�; however, recent
reports describe PPAR�-independent mechanisms
(Harris et al, 2002; Petrova et al, 1999; Rossi et al,
2000; Thieringer et al, 2000; Vaidya et al, 1999). It is
not known whether PPAR�-independent signaling
pathways exist in gastrointestinal malignant tumor
cells. Therefore, we induced down-regulation of
PPAR� in HCC cells using PPAR� antisense oligode-
oxynucleotides. HCC cells were incubated with 1 �M

PPAR� antisense or sense oligodeoxynucleotides,
and expression of PPAR� was analyzed by Western
blotting. HCC cells transfected with PPAR� antisense
oligos showed reduced PPAR� expression (Fig. 6a),
compared with cells that received sense oligos. In
cells transfected with sense oligos, 15d-PGJ2 induced
cell death (Fig. 6b). This loss of viability was even
greater in HCC cells treated with PPAR� antisense
oligos for both SK-Hep1 cells and HepG2 cells. Col-
lectively, these results suggested that 15d-PGJ2 af-
fected PPAR�-independent pathways that contribute
to HCC cell death.

15d-PGJ2 Regulates NF-�B Activation Through
PPAR�-Dependent and -Independent Pathways

To further evaluate the ability of 15d-PGJ2 to influence
PPAR�-independent pathways, we investigated
NF-�B activation by 15d-PGJ2 when PPAR� was
down-regulated. In SK-Hep1 cells, 15d-PGJ2 inhibited
NF-�B activation induced by TNF-� when PPAR� was
normally expressed (open bars) or down-regulated
(solid bars). However, in HepG2 cells, down-regulation
of PPAR� interfered with 15d-PGJ2 effects such that
TNF-� induced NF-�B activation even in the presence
of 15d-PGJ2 (Fig. 7a). We evaluated expression of
apoptosis-related proteins by 15d-PGJ2 treatment
when PPAR� expression was down-regulated (Fig.
7b). In SK-Hep1 cells, 15d-PGJ2 reduced XIAP ex-
pression regardless of the PPAR� expression level.
Caspase-3 also was down-regulated, but to a greater
extent in cells expressing less PPAR�. There were no
changes in XIAP expression after 15d-PGJ2 treatment
of HepG2 cells (Fig. 7b). 15d-PGJ2 treatment induced
a slight up-regulation of caspase-3 with PPAR� down-

Figure 4.
Effects of 15dPGJ2 and TNF-related apoptosis-induced ligand (TRAIL) on
human HCC cell viability (SK-Hep1, solid bars; HepG2, open bars). HCC cells
were incubated with 100 ng/ml TRAIL, 50 �M 15d-PGJ2, or with a mixture of
TRAIL and 15d-PGJ2 for 24 hours. Cell viability was assessed by MTT assay.
The data shown are the mean � SD of five independent experiments. The
combination of TRAIL and 15dPGJ2 treatment promoted cell death compared
with each individual treatment.
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regulation, compared with cells with normal expres-
sion of PPAR�. Thus, it seemed that 15d-PGJ2 sup-
pressed NF-�B activation through PPAR�-dependent
and -independent mechanisms and regulated XIAP
expression in HCC cells (Fig. 8).

Discussion

In this study we demonstrated that 15d-PGJ2, a
natural cyclopentenone prostaglandin and PPAR� ag-
onist, induced apoptosis in HCC cells. This occurred
with variable caspase-3 activation; pretreatment with
Z-VAD-fmk, a pan-caspase inhibitor, only partially
interfered with the 15d-PGJ2 induction of apoptosis in
HCC cells. This suggests that 15d-PGJ2 induces
apoptosis using both caspase-dependent and

-independent pathways in HCC cells. Some reports
demonstrate caspase-3-independent apoptotic path-
ways, including apoptosis induced by exogenous ni-
tric oxide, transforming growth factor-�, cell-
permeable peptide SN50, arsenic trioxide (As2O3),
NF-�B inhibition, or a low-molecular weight fraction of
human seminal plasma (Brown et al, 1999; Kolenko et
al, 1999; Mohr et al, 1998; Pagliari et al, 2000; Perfet-
tini et al, 2002; Sternsdorf et al, 1999; Untergasser et
al, 2001). It is also reported that a caspase-
independent mechanism is partly involved in the 15d-
PGJ2–induced apoptosis of malignant cells (Nishida et
al, 2002), which is consistent with the current findings.
During caspase-3–independent apoptosis, several

studies show mitochondrial potential changes and

Figure 5.
a, Effects of 15d-PGJ2 on NF-�B activation after TNF-� treatment of HCC cells. Cells were incubated with 50 ng/ml TNF-� alone (open bars) or pretreated for 24 hours
with 50 ng/ml TNF-� followed by 50 �M 15d-PGJ2 (solid bars). Reporter gene activity was measured 6 hours after treatment. NF-�B activation was assessed by a
luciferase assay. Data shown are the mean � SD of three independent experiments. b, Expression of apoptotic-related proteins (XIAP and caspase-3) after transient
transfection with I�B� expression vector or control vector. Protein expression was analyzed by Western blotting. The I�B� vector transfection induced a decrease
in XIAP expression levels but did not affect caspase-3.
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changes in expression of antiapoptotic proteins (Pa-
gliari et al, 2000; Untergasser et al, 2001). Our study
also demonstrated down-regulation of XIAP, Bclx, and
Apaf-1 by 15d-PGJ2 in SK-Hep1 cells. In contrast,
FLIP was not down-regulated in SK-Hep1 and HepG2
cells, and no changes in apoptosis-related proteins
were observed in HepG2 cells. Because degradation
of FLIP by PPAR� ligand is possible (Kim et al, 2002),
the differences we observe may be characteristic of
each HCC cell line. Down-regulation of these anti-
apoptotic proteins may promote TRAIL-induced apo-
ptosis in HCC cells. Because 15d-PGJ2 treatment
enhanced cell death induced by TRAIL in HepG2 cells,
other apoptosis-related proteins may be affected by
15d-PGJ2, such as Bcl-2, Bax, inhibitor of
apoptosis-1, or inhibitor of apoptosis-2. The functional
basis that links expression of these apoptosis-related
proteins and 15d-PGJ2 treatment should be assessed
to more fully understand PPAR�-induced apoptosis of
malignant cells.
NF-�B activation induces specific gene expression

that tightly regulates programmed cell death and inhibi-
tion of apoptosis (Barkett and Gilmore, 1999; Beg et al,
1995; Schmid and Adler, 2000). In agreement with pre-

vious reports (Chinetti et al, 1998; Chung et al, 2000; Ji et
al, 2001; Petrova et al, 1999; Ricote et al, 1998), our data
demonstrated that 15d-PGJ2 inhibited NF-�B activation,
particularly in SK-Hep1 cells. However, inhibition of
NF-�B activation by 15d-PGJ2 wasweak in HepG2 cells.
Because overexpression of I�B� induced down-
regulation of XIAP expression in both SK-Hep1 and
HepG2 cells, XIAP down-regulation by 15d-PGJ2 in HCC
cells may be regulated through NF-�B activation and
thus the effect of 15d-PGJ2 on NF-�B activation may be
weak. On the other hand, Bclx was not down-regulated
by overexpression of I�B�. PPAR� activation inhibits
NF-�B activation, as well as phosphatidylinositol-3-ki-
nase/Akt (Goetze et al, 2002), activator protein-1, and
signal transducers and activators of transcription (Ricote
et al, 1998). Inhibition of these pathways by 15d-PGJ2
may also affect expression of apoptosis-related proteins
in HCC cells.
Although 15d-PGJ2 is a high-affinity ligand for

PPAR� and is associated with cell death and gene
expression through PPAR� activation, 15d-PGJ2 also
has PPAR�-independent signaling pathways. These
independent mechanisms include suppression of in-
ducible nitric oxide synthase activity (Hortelano et al,
2000; Petrova et al, 1999), modulation of reactive
oxygen intermediates production (Vaidya et al, 1999),
induction of IL-8 (Harris et al, 2002), stimulation of
apoptosis of hepatic myofibroblasts (Li et al, 2001),
and inhibition of NF-�B and activator protein-1 activa-
tion (Boyault et al, 2001). In this study, we demon-
strated that 15d-PGJ2 was toxic to HCC cells and
suppressed NF-�B activation through a PPAR�-
independent pathway in SK-Hep1 cells. However, in
HepG2 cells, suppression of NF-�B activation was not
observed in cells with low PPAR� expression, al-
though apoptosis was induced. This suggests that
apoptosis by 15d-PGJ2 is induced mainly via a
PPAR�-independent mechanism in HCC cells. The
effect of 15d-PGJ2 on NF-�B activation by may be
influenced by dual, overlapping pathways that may or
may not involve PPAR�. In SK-Hep1 cells, 15d-PGJ2
may inhibit NF-�B activation via primarily a PPAR�-
independent mechanism, whereas in HepG2 cells, a
PPAR�-dependent mechanism may predominate.
In SK-Hep1 cells, reduced XIAP expression was

observed in cells with normal and down-regulated
PPAR� expression levels after suppression of NF-�B
by 15d-PGJ2. This result supports the notion that
15d-PGJ2 regulates XIAP expression via a PPAR�-
independent mechanism in SK-Hep1 cells. Because
the ability of 15d-PGJ2 to inhibit NF-�B activation was
relatively weak in HepG2 cells (Fig. 5a), XIAP expres-
sion may not be regulated by 15d-PGJ2, irrespective
of PPAR� expression in HepG2 cells. XIAP down-
regulation, which sensitizes tumor cells to TRAIL-
induced apoptosis, may be an alternative treatment
pathway, possible via TNF-� or Fas.
In conclusion, 15d-PGJ2 induces apoptosis in HCC

cells and inhibits NF-�B activation and XIAP expression
via a PPAR�-independent mechanism. There are malig-
nant cells with minimal or no PPAR� expression (Elstner
et al, 1998; Ohta et al, 2001), suggesting that cell toxicity

Figure 6.
a, Down-regulation of PPAR� expression in HCC cells (SK-Hep1 and HepG2)
after transfection with PPAR� antisense oligos. HCC cells were transfected
with 1 �M PPAR� sense (control) or antisense oligodeoxynucleotides using
Fugene 6 and incubated for 24 hours at 37° C. PPAR� expression decreased
after transfection with the antisense oligos. b, Cell viability after down-
regulation of PPAR� expression. HCC cells were incubated in the absence
(open bars) or presence (solid bars) of 50 �M 15d-PGJ2 for 24 hours. Cell
viability was assessed by MTT assay. The data shown are the mean � SD of five
independent experiments.
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pathways independent of PPAR� should be further in-
vestigated for induction of tumor cell apoptosis. Down-
regulation of apoptosis inhibitory proteins by 15d-PGJ2
may increase the sensitivity of tumor cells to TRAIL and
sensitize them to TNF-family receptor signaling, opening
up new opportunities for therapeutic intervention.

Materials and Methods

Cell Lines and Reagents

The HCC cell lines, HepG2 and SK-Hep1 cells, were
purchased from the American Type Culture Collection
(Rockville, Maryland). HLE (JCRB 0404) was purchased
from the Health Science Research Resource Bank (Osa-
ka, Japan). These cell lines were cultured in DMEM
(Dainippon Pharmaceutical Company, Ltd., Osaka, Ja-

pan) at 37° C. All media were supplemented with 1%
penicillin/streptomycin (GIBCO BRL, Grand Island, New
York) and 10% heat-inactivated FCS (GIBCO BRL).
15d-PGJ2 was purchased from Cayman Chemicals (Ann
Arbor, Michigan). Anti-Caspase-3, Bclx, and Apaf-1 an-
tibody were purchased from Santa Cruz Biotechnology,
Inc. (Santa Cruz, California). Anti-FLIP antibody was
purchased from Millennium Biotechnology (Romona,
California). Anti-XIAP antibody was purchased from BD
Bioscience (Franklin Lakes, New Jersey). Anti-PPAR�1,2
polyclonal antibody was purchased from CALBIOCHEM
(San Diego, California).

Assessment of HCC Cell Viability

To assess HCC cell viability, the 3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was

Figure 7.
a, The effects of down-regulated PPAR� expression on NF-�B activation in HCC cells. Cells were transfected with 1 �M PPAR� sense oligodeoxynucleotides (open
bars) or 1 �M PPAR� antisense oligodeoxynucleotides (solid bars). HCC cells were pretreated with 50 ng/ml TNF-� for 2 hours and then incubated in the absence
or presence with 50 �M 15d-PGJ2 for 6 hours. NF-�B activation was assessed by a luciferase assay. Data shown are the mean � SD of three independent experiments.
In SK-Hep1 cells, down-regulation of PPAR� expression did not change NF-�B activation levels. In HepG2 cells, the down-regulation of PPAR� expression restored
NF-�B activation levels. b, The expression of XIAP and caspase-3 after down-regulation of PPAR� expression. HCC cells were transfected with PPAR� sense or
antisense oligos and incubated in the absence or presence of 50 �M 15d-PGJ2 for 24 hours. Protein expression was analyzed by Western blotting.
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performed. The HCC cells were plated at a density of 5
� 103 cells per well in 96-well microtiter plates (Corning
Glass Works, Corning, New York), and each plate was
incubated for 24 hours at 37° C in 5% CO2. Each
reagent was added, and the plate was incubated for 24
hours. The live-cell count was determined using a Cell
Titer 96 assay kit (Promega, Madison, Wisconsin) ac-
cording to the manufacturer’s instructions. The absor-
bance of each well was measured at 570 nm with a
microtiter plate reader (Bio-Rad Laboratories, Hercules,
California).

Detection of Apoptosis

A total of 2 � 104 HCC cells per well was cultured in
an 8-well Lab-tek II chamber slide (Nalge Nunc Inter-
national, Rochester, New York) for 24 hours, followed
by addition of 50 �M 15d-PGJ2 (Cayman Chemicals).
After incubation for 24 hours, cell nuclei were stained
with DAPI (Sigma, St. Louis, Missouri) and observed
with a fluorescence microscope (Zeiss, Göttingen,
Germany). To detect early apoptotic changes, cells
were incubated with 50 �M 15d-PGJ2 for 12 hours,
and expression of cell surface phosphatidylserine was
determined with an Annexin V-FITC apoptosis detec-
tion kit (MBL Company, Ltd., Nagoya, Japan).

Western Blotting Analysis of HCC Cell Extracts After
15d-PGJ2 Stimulation

HCC cells (4 � 105; SK-Hep1, HLE, or HepG2) were
grown in 60-mm dishes for 24 hours at 37° C in 5%
CO2 the day before reagent addition. HCC cells were
incubated with 0, 10, or 50 �M 15d-PGJ2 (Caymen
Chemicals) for 24 hours at 37° C in 5% CO2. After
incubation, HCC cells were harvested and lysed in
lysis buffer (50 mmol/L Tris-HCl, pH 8, 150 mmol/L
NaCl, 5 mmol/L ethylenediaminetetraacetic acid, 1%
NP-40, 1 mmol/L phenylmethylsulfonyl fluoride) on
ice. After centrifugation, supernatants were collected
and their protein content was measured using a Bio-

Rad Protein Assay kit (Bio-Rad Laboratories). Equal
amounts of protein from each extract were separated
by 14% SDS-PAGE and transferred onto nitrocellu-
lose membranes (Toyo Roshi, Tokyo, Japan) using the
Bio-Rad electrotransfer system. Blots were blocked
by incubation in 5% nonfat dried milk in Tris-buffered
saline overnight at 4° C and probed for 2 hours at
room temperature with each antibody. Antibodies
were diluted 1:1000 with 0.05% Tween 20 in Tris-
buffered saline. The immunoblots were then probed
with horseradish peroxidase-conjugated anti-rabbit
IgG (Amersham Biosciences Corp., Piscataway, New
Jersey), anti-mouse IgG (Santa Cruz Biotechnology),
or anti-goat IgG (Zymed Laboratory Inc., South San
Francisco, California) at 1:2000 dilutions in 5% nonfat
dried milk in Tris-HCl, pH 7.5, and 0.05% Tween 20.
After the final washing, signal was detected with an
ECL kit (Amersham Pharmacia Biotech, Buckingham-
shire, United Kingdom).

NF-�B Luciferase Reporter Gene Assay

The pNF-�B-Luc Vector (Mercury Pathway Profiling
System) and pCMV-I�B� were obtained from Clon-
tech (San Diego, California). Human HCC cells (2 �
105) were grown in 6-well plates (NUNC Brand Prod-
ucts, Demmark) the day before transfection. Cells
were transfected using FuGENE 6 (Boehringer Mann-
heim, Mannheim, Germany) according to the manu-
facturer’s protocol. HCC cells were pretreated with 50
ng/ml TNF-� for 2 hours before treatment with 50 �M

15d-PGJ2. Reporter gene activity was measured 6
hours after 15d-PGJ2 treatment.

PPAR� Antisense Oligodeoxynucleotide Transfection in
HCC Cells

To inhibit PPAR� protein expression in HCC cells,
phosphorothiorate antisense oligodeoxynucleotides
were used to inhibit the FLIP initiation codon. Control
cells were transfected with sense oligodeoxynucleoti-

Figure 8.
A schematic outline of the proposed mechanism of 15d-PGJ2 signaling pathways in SK-Hep1 and HepG2 HCC cell lines. Cell toxicity with 15d-PGJ2 is exerted through
a PPAR�-independent pathway in both SK-Hep1 and HepG2 cells. Cell toxicity with 15d-PGJ2 partially accompanies caspase-3 activation in SK-Hep1 cells. In HepG2
cells, 15d-PGJ2 weakly activates caspase-3. NF-�B activation is differentially suppressed in SK-Hep1 and HepG2 cells. In SK-Hep1 cells, 15d-PGJ2 suppresses NF-�B
activation through a PPAR�-independent pathway, whereas in HepG2 cells the signaling pathway of NF-�B suppression by 15d-PGJ2 is via PPAR�. The suppression
of NF-�B activation results in XIAP down-regulation in both HCC cell lines.
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des. The following sequences were used (Nikitakis et
al, 2002): PPAR� antisense, 5'-ctctgtgtcaaccatggtca-
3'; PPAR� sense, 5'-atgaccatggttgacacaga-3'. A total
of 5 � 105 HCC cells per well was transfected with 1
�M PPAR� antisense or sense oligodeoxynucleotides
using FuGENE 6 (Boehringer Mannheim) according to
the manufacturer’s protocol and incubated for 24
hours at 37° C. PPAR� expression was analyzed by
Western blotting.
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