Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

High concentrations and photochemical fate of oxygenated hydrocarbons in the global troposphere

Abstract

OXYGENATED species in the atmosphere are important sources of free radicals and are intricately linked with the fate of nitrogen oxides (NOx), which are themselves necessary for tropospheric ozone formation1,2. With the exception of formaldehyde, oxygenated hydrocarbons have rarely been measured in the free troposphere. Here we report airborne measurements indicating the presence of high concentrations (compared to those of routinely measured C2–C6 tropospheric hydrocarbons3,4) of acetone and methanol. We use a three-dimensional model to show that acetone photochemistry provides a quantitatively significant (up to 50%) pathway for sequestering NOx in the form of peroxyacetylnitrate, a relatively unreactive temporary reservoir of NOx. Furthermore, in the dry regions of the upper troposphere, acetone can provide a large primary source of HOx (OH + HO2) radicals, resulting in increased ozone production. This surprisingly significant contribution of such oxygenated hydrocarbons to tropospheric NOx, HOx and ozone cycling is likely to be affected by their changing natural and anthropogenic emissions due to land-use change, biomass burning and alcohol-based biofuel use.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lloyd, A. C. NBS spec. publ. 557, 27–48 (1979).

    CAS  Google Scholar 

  2. Singh, H., B. & Hanst, P. L. Geophys. Res. Lett. 8, 941–944 (1981).

    Article  ADS  CAS  Google Scholar 

  3. Singh, H. B. & Zimmerman, P. B. Adv. envir. Sci. Technol. 24, 177–235 (1992).

    CAS  Google Scholar 

  4. Blake, D. R. et al. J. geophys. Res. 99, 1699–1719 (1994).

    Article  ADS  CAS  Google Scholar 

  5. Cavanagh, L., Schadt, C. & Robinson, E. Envir. Sci. Technol. 3, 251–257 (1969).

    Article  ADS  CAS  Google Scholar 

  6. Snider, J. R. & Dawson, G. A. J. geophys. Res. 90, 3797–3805 (1985).

    Article  ADS  CAS  Google Scholar 

  7. Goldan, P. D., Kuster, W. C., Fehsenfeld, F. C. & Montzka, S. A. J. geophys. Res. (in the press).

  8. O'Hara, D. & Singh, H. B. Atmos. Envir. 22, 2613–2615 (1988).

    Article  CAS  Google Scholar 

  9. Singh, H. B. et al. J. geophys. Res. 99, 1805–1819 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Arnold, F., Knop, G. & Zeiereis, H. Nature 321, 505–507 (1986).

    Article  ADS  CAS  Google Scholar 

  11. DeMore, W. B. et al. Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling (JPL Publ. No. 94-26, Jet Propulsion Laboratory, Pasadena, CA, 1994).

    Google Scholar 

  12. Betterton, E. A. Adv. envir. Sci. Technol. 24, 1–50 (1992).

    CAS  Google Scholar 

  13. Atkinson, R. Atmos. Envir. 24A, 1–41 (1990).

    Article  ADS  CAS  Google Scholar 

  14. Kanakidou, M. & Crutzen, P. J. Chemosphere 26, 787–801 (1993).

    Article  ADS  CAS  Google Scholar 

  15. Wennberg, P. et al. Science 266, 398–404 (1994).

    Article  ADS  CAS  Google Scholar 

  16. Isidorov, V. A., Zenkench, I. G. & Iofe, B. V. Atmos. Envir. 19, 1–8 (1985).

    Article  CAS  Google Scholar 

  17. Isidorov, V. A. Organic Chemistry of the Earth's Atmosphere (Springer, Berlin, 1990).

    Book  Google Scholar 

  18. MacDonald, R. C. & Fall, R. Atmos. Envir. 27A, 1709–1713 (1993).

    Article  ADS  CAS  Google Scholar 

  19. Goldan, P. D., Kuster, W. C., Fehsenfeld, F. C. & Montzka, S. A. Geophys. Res. Lett. 20, 1039–1042 (1993).

    Article  ADS  CAS  Google Scholar 

  20. Lobert, J. M. et al. in Global Biomass Burning (ed. Levine, J. S.) 289–304 (MIT Press, Cambridge, MA, 1991).

    Google Scholar 

  21. McKenzie, L. M., Hao, W. M., Richards, G. N. & Ward, D. E. Atmos. Envir. 28, 3285–3292 (1994).

    Article  CAS  Google Scholar 

  22. Kanakidou, M., Singh, H. B., Valentin, K. M. & Crutzen, P. J. J. geophys. Res. 96, 15395–15413 (1991).

    Article  ADS  CAS  Google Scholar 

  23. Madronich, S. & Calvert, J. G. J. geophys. Res. 95, 5697–5715 (1990).

    Article  ADS  CAS  Google Scholar 

  24. Zhou, X. & Mopper, K. Envir. Sci. Technol. 24, 1864–1869 (1990).

    Article  ADS  CAS  Google Scholar 

  25. Singh, H. B., Salas, L. J. & Stiles, R. E. J. geophys. Res. 88, 3684–3690 (1983).

    Article  ADS  CAS  Google Scholar 

  26. Elliott, S. & Rowland, F. S. J. atmos. Chem. 20, 229–236 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, H., Kanakidou, M., Crutzen, P. et al. High concentrations and photochemical fate of oxygenated hydrocarbons in the global troposphere. Nature 378, 50–54 (1995). https://doi.org/10.1038/378050a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/378050a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing