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SUMMARY: Fas-L expresses on a variety of tumors and is suspected to modify the dialog between tumor and the immune
system. However, the cellular abnormality in tumor cells leading to an aberrant expression of Fas-L is unclear. In this study, we
demonstrate the involvement of Ras signaling in the Fas-L expression in several ways. First, the activated Ha-rasVal12 gene
enhanced the Fas-L expression of primary human glial cells. Second, blocking the Ras signal pathway in glioma cells by lovastatin
or the Ha-rasAsn17 dominant-negative mutant gene resulted in reduced Fas-L expression. Transfection of the Ha-rasAsn17 into
glioma cells also inhibited the activation of NFkB, which is a downstream component of Ras signaling. Accordingly, the
membrane-permeable NFkB competitor suppressed the Fas-L expression. Furthermore, the Fas-L expression coincided with the
Ras activity in the murine 212 cells, in which the Ras activity could be induced by isopropyl b-D-thiogalactoside. In summary,
these results suggest that the enhanced Ras signaling with consequential NFkB activation, which is a frequent defect found in
tumors, could mediate the Fas-L expression of tumors. (Lab Invest 2000, 80:529–537).

F as-L (CD95L, APO-1L), a member of the tumor
necrosis factor receptor superfamily, sparks the

death signal into Fas-bearing cells by the engagement
with Fas molecules (Itoh et al, 1991; Takahashi et al,
1994). Apoptosis triggered by the Fas/Fas-L signaling
cascade is an important pathway involving not only
homeostasis of the immune system (Chervonsky et al,
1997), but also embryo organogenesis (Seino et al,
1997; Yeh et al, 1998). In contrast to the tightly
regulated expression in lymphocytes (Alderson et al,
1995; van Parijs and Abbas, 1996), Fas-L is constitu-
tively expressed in several non-lymphoid tissues of
immune privilege sites (Ferguson and Griffith, 1997).
The recent findings that Fas-L-bearing melanoma and
hepatoma cells induced apoptosis of T cells in vitro
(Hahne et al, 1996; Strand et al, 1996) and that
tumorigenesis of melanoma cells was delayed in Fas-
deficient lpr mutant mice (Hahne et al, 1996) raise an
interesting hypothesis that Fas-L renders tumor to
escape from immune surveillance (O’Connell et al,
1999; Walker et al, 1998). Since then, ectopic expres-
sion of Fas-L has been found in many malignancies.
Fas-L appears to modulate both immunosuppressive
and proinflammatory immune responses in various
tumor models (Walker et al, 1998). Despite the wealth
of information, signaling in tumor cells for the Fas-L
expression is not well elucidated.

The NFkB binding site, a downstream component of
the Ras signaling, has been identified in the promoter
region of Fas-L gene and could affect the regulation of
Fas-L in T cells (Faris et al, 1998; Latinis et al, 1997).
Oncogenic mutations that alter the Ras activity have
often been found in tumor cells (Kaba et al, 1990;
Lowy and Willumsen, 1993). Therefore, we speculated
that the trigger of the Ras signaling pathway that
results in NFkB activation may mediate the Fas-L
expression in tumor cells.

Glioma is one of the common tumors in the central
nervous system and expresses a high level of Fas-L
(Gratas et al, 1997; Saas et al, 1997). Moreover, glioma
cells showed high Ras activity because of either
enhanced transcription of the N-ras gene or reduced
function of Ras suppressor RSU-1 (Tsuda et al, 1995;
Tsurushima et al, 1996). Blocking the Ras activity by
the Ha-rasAsn17 dominant-negative mutant gene de-
creased cell proliferation, indicating that Ras is active
and mediates an important mitogenic pathway in
glioma (Guha et al, 1997). In this study, the Ras
signaling in glioma cells was blocked by lovastatin, by
Ha-ras dominant-negative mutant gene, or by the
NFkB competitive peptides. Reductions in Ras and
NFkB activities in treated cells were confirmed by
luciferase-based reporter assays. Transcripts and pro-
tein levels of Fas-L in cells were detected by reverse
transcription-polymerase chain reaction and flow cy-
tometric analysis, respectively. Activated Ha-rasVal12

gene was transiently expressed in primary human glial
cells to evaluate its effect on the Fas-L expression. In
addition, we utilized an isopropyl b-D-thiogalactoside
(IPTG)-inducible Ras expression system constructed
in murine NIH3T3 cells to explore the association of
the Ras activity and the Fas-L expression.
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Results

Activated Ha-rasVal12 Stimulated Fas -L Expression in
Glial Cell

U-373MG and U118MG cells showed elevated ex-
pression of Fas-L at both transcriptional and transla-
tional levels as compared with normal glial cells (Fig. 1,
a and b). At 36 hours posttransfection with activated
Ha-rasVal12, normal glial cells had increased amounts
of Fas-L mRNA (Fig. 2a). Moreover, Fas-L-positive glial
cells, being stained immunohistochemically with Fas-
L-specific antibody, appeared in the EGFP-expressing
cells, which would simultaneously receive Ha-rasVal12

in this experimental condition (Fig. 2b). Normal glial
cells transfected with pEGFP-N1 alone were flat and
polygonal with little overlapping, whereas Ha-rasVal12-
transfected glial cells became spindle form and over-
lapped.

Lovastatin Suppressed the Expression of Fas-L in Glioma
Cells

Treatment with 5 mg/ml lovastatin for 24 hours appar-
ently did not affect the viability of U-373MG cells.
U-118MG cells were relatively sensitive to lovastatin,
that growth was reduced approximately 40% in 24
hours after treatment with 5 mg/ml lovastatin (data not
shown). Treatment with lovastatin for 12, 24, or 36
hours, both U-118MG and U-373MG showed less
Fas-L mRNA than DMSO-treated controls (Fig. 3a).
The transcripts of Fas-L expression were significantly
reduced by lovastatin at 24 hours posttreatment, then

gradually recovered. Decrease in Fas-L protein level
was further confirmed in 24 hours-lovastatin treated
cells by flow cytometric analysis (Fig. 3b).

Transfection of Ha-rasAsn17 Suppressed the Ras Activity,
the NFkB Activity, and the Fas-L Expression in Glioma
Cells

The inhibitory effect of Ha-rasAsn17 dominant-negative
mutant gene on Ras activity in glioma cells was
determined directly with the Pzy-luc reporter plasmid,
which requires the Ras activity to express luciferase.
By transfection with Pzy-luc alone for 24 hours,
U-118MG cells showed a higher level of luciferase
activity than U-373MG cells. Cotransfection with Pzy-
luc and Ha-rasAsn17 significantly reduced the lucif-
erase units of reporter in both U-118MG and
U-373MG cells, as compared with those of Pzy-luc-
tranfected cells, indicating that Ha-rasAsn17 inhibited
effectively the Ras activity (Fig. 4a). Similarly, cells
cotransfected with Ha-rasAsn17 and NKkB-luc showed
less luciferase units than cells transfected with NKkB-
luc alone (Fig. 4b), indicating that Ha-rasAsn17 also
effectively suppressed the NKkB activity.

After cotransfection with Ha-rasAsn17 combining ex-
cess amounts of pEGFP-N1 and growth in fresh
medium for 36 hours, cells were subjected to measur-
ing Fas-L protein by flow cytometric analysis gating on
EGFP-positive population. Compared with transfec-
tion with an empty vector, expression of Ha-rasAsn17 in
glioma cells suppressed the Fas-L expression in gli-
oma cells in two independent experiments (Fig. 4c).

Figure 1.
Enhanced expression of Fas-L in glioma cells. a, After growth for 2 days in 20% FCS/DMEM, cells were harvested. Fas-L transcripts were analyzed by RT-PCR. Lanes
1 to 3: U-373MG, U-118MG, and normal glial cells, respectively. b, Level of Fas-L protein was detected by flow cytometry analysis with antibody recognizing human
Fas-L. Staining with secondary antibody alone was the negative control.
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Suppression of Fas-L Gene in Glioma Cells by NFkB
Competitive Peptide

Cells treated with membrane-permeable NFkB com-
petitive peptide for 24 hours were harvested and
subjected to detection on mRNA by RT-PCR and
protein and by flow cytometric analysis. NFkB com-
petitive peptide significantly reduced the amounts of

Fas-L transcript (Fig. 5a), as well as protein (Fig. 5b) in
glioma cells as compared with those of control.

Expression of Fas-L Coincided with the Ras Activity in
212 Cells

On exposure to 2.5 mM IPTG for 24 hours, 212 cells
expressed elevated amounts of Ras protein (Fig. 6a).

Figure 2.
Activated Ha-rasval12 gene stimulated the expression of Fas-L in normal glial cells. DNA transfection was done as described in “Material and Methods.” Levels of Fas-L
were compared in 36 hours posttransfected cells. a, The transcripts of Fas-L were analyzed by RT-PCR. Lane 1, Ha-ras val12 plus pEGFP-N1; Lane 2, pEGFP-N1 alone.
b, Fas-L protein was immunohistochemically stained using PE-labeled Fas-L specific antibody. Upper panel, light microscopy; middle panel, EGFP-fluorescence; lower
panel, Fas-L staining.
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The Ras activity in 212 cells reached maximal in 24
hours after induction with IPTG. Accordingly, the Ras
activity in IPTG-treated 212 cells, revealed by the
luciferase units in measurement with Pyz-luc reporter,
was enhanced approximately to 3.5-fold over mock-
treated cells. The expression of Fas-L, both at RNA
and protein levels, agreed well with the Ras activity in
212 cell upon IPTG induction (Fig. 6b).

Discussion

We provide evidence to show an active participation
of Ras signaling in the Fas-L expression. Transfection
with the activated Ha-RasVal12 gene enhanced the
Fas-L expression in normal glial cells. Conversely,
suppressing Ras signal pathway in glioma cells by
lovastatin, Ha-RasAsn17 dominant-negative mutant
gene or NFkB competitive peptide could down-
regulate the Fas-L expression. The suppression of
NFkB activity that resulted in reduced Fas-L in glioma
cells is consistent with the findings that NFkB binding
to the Fas-L promoter region is required for the Fas-L
expression in T cells (Chen et al, 1997; Kasibhatla et
al, 1998). NFkB has been known to be a downstream
mediator of Ras signaling pathway, and may regulate

the transcription of genes for cell survival and immune
responses (Ljungdahl et al, 1997). As expected, Ha-
RasAsn17 dominant-negative mutant gene inhibited not
only the Ras activity but also the NF-kB activity in
glioma cells. Our results indicate that the Ras signaling
in glioma is transmitted down through NFkB to acti-
vate Fas-L. Furthermore, the stimulatory effect of Ras
on the Fas-L expression was demonstrable in murine
fibroblast-like cells with an IPTD-inducible Ras sys-
tem, suggesting that Ras signal-regulated expression
of Fas-L might be common in malignant cells of
different origins.

Ras protein has been known to transduce multiple
signals regulating cell growth (Campbell et al, 1998;
White et al, 1995). As mentioned earlier, Ras
dominant-negative mutants decrease the proliferation
of astrocytoma cell lines (Guha et al, 1997). We failed
to establish a stable cell clone carrying Ha-RasAsn17

dominant-negative mutant gene (data not shown),
which further confirms the essential role of Ras mito-
genic pathway for the survival of glioma cells. Re-
cently, accumulated information has shown that Ras
could also mediate immune down-regulation through
several growth-unrelated mechanisms (Weijzen et al,

Figure 3.
Effect of lovastatin on Fas-L. After treated with either 5 mg/ml lovastatin (Lanes 1 to 3) or DMSO (Lanes 4 to 6), cells were harvested at intervals. a, The Fas-L
transcripts were analyzed by RT-PCR. Lanes 1 and 4, 12 hours; Lanes 2 and 5, 24 hours; Lanes 3 and 6, 36 hours posttreatment. b, Fas-L protein in cells treated
with lovastatin for 12 hours was detected by flow cytometry analysis. Lovastatin-treated cells, blank curve; DMSO-treated cells, filled curve.
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1999). For instances, high Ras expression is corre-
lated with an increased level of invasiveness of breast
cancer, in which Ras has been linked to MHC down-
regulation (Solana et al, 1992). In addition, Ras-
expressing tumors are shown to have a marked de-
crease in Fas or TNF-a receptor, which renders
tumors resistant to cytotoxic T cell-mediated killing
(Fenton et al, 1998; Fernandez et al, 1992). These
immune-associated mechanisms can explain the ob-
servations that the Ras confers progression and me-
tastasis of some cell lines in vivo, but does not alter
significantly the growth rate of those cells in vitro
(Muschel et al, 1985; Wang et al, 1997). Taken to-
gether, our finding supports the idea that oncogenic
potential of Ras may reside in the capacity not only to
promote cell growth, but also to defeat immune sur-
veillance by increasing the expression of Fas-L.

Materials and Methods

Cell Culture

Human glioma cell lines U-373MG and U-118MG were
purchased from the American Type Culture Collection
(Rockville, MD). Brain tissues were obtained from
patients who underwent operations at National Cheng
Kung university Hospital for brain damage that was
unrelated to malignancy. Primary explant cultures of
normal glial cells were then established according to a
method described elsewhere (Yong et al, 1991). Cells
were cultured in Dulbecco modified Eagle’s medium
(DMEM; Gibco BRL, New York) supplemented with
20% fetal calf serum (FCS), 1% penicillin, and 1%
fungizone at 37° C/5% CO2. The 212 cells, derived
from NIH3T3 cells and mounted with an isopropyl
b-D-thiogalactoside (IPTG; 2.5 mM; Sigma Chemical,

Figure 4.
Effect of Ha-rasAsn17 dominant-negative mutant gene on Ras, NFkB, and Fas-L. Cells were cotransfected with Ha-rasAsn17 and pEGFP-N1 and grown further for 36
hours. Relative luciferase units detected by a, Pzy-luc reporter and b, pNFkB-luc reporter reflect the activities of Ras and NFkB, respectively. Values shown are means
of two independent experiments. c, Fas-L protein stained with Fas-L-specific antibody was detected by flow cytometry analysis gating on EGFP-positive cell. Blank
curve, Ha-rasAsn17/pEGFP-N1-transfected; filled curve, pEGFP-N1-transfected.
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St. Louis, Missouri)-inducible Ras system (Liu et al,
1992, 1998), were grown in 10% FCS/DMEM. Stan-
dard Chem. and Pharm. Co., Taiwan, Republic of
China, kindly provided us with lovastatin, which is a
competitive inhibitor of 3-hydroxyl-3-methylglutaryl
coenzyme A reductase and inhibits the translocation-
associated isoprenylation of several Ras family pro-
teins, resulting in loss of their signal transducing ability
(Cuthbert and Lipsky, 1997; Girgert et al, 1994). NFkB
activity was inhibited by the membrane-permeable
NFkB competitive peptide (50 mg/ml; BIOMOL Re-
search Laboratories, Plymouth Meeting, Pennsylva-
nia) according to the manufacturer’s instructions.

DNA and Transfection

Plasmid DNA was delivered into cells by lipofection
with a ratio of 1 mg DNA/20 m1 lipofectamine (Super-
Fect Transfection Reagent; Qiagen, Hilden, Germany).
After transfection, cells were grown in fresh 20%
FCS/DMEM for 24–36 hours then harvested for de-
tections on Fas-L, Ras, or NFkB. pEGFP-N1 plasmid

(Clontech, Palo Alto, California) was used as the
control to evaluate transfection efficiency and to label
transfection-positive cells. EGFP-expressing cells
were green under fluorescent microscopy. Ha-rasVal12

is an activated mutant cloned from the human T24
bladder carcinoma cell line (Capon et al, 1983).
Dominant-negative mutant Ha-rasAsn17 (pZipAsn17;
Feig and Cooper, 1988) was kindly provided by Dr.
S.F. Yang (Academia Sinica, Taiwan, Republic of
China). The transfection efficiency was approximately
10% in this experimental condition. By cotransfection
experiments, plasmids coding Ha-rasVal12 activated
mutant or Ha-rasAsn17 dominant-negative mutant were
mixed with the pEGFP-N1, Pzy-luc, or the NKkB-luc at
a ratio of 9:1. The excess amounts of reporter plas-
mids over Ras plasmids ensured that those pEGFP-
N1-, Pzy-luc-, or NKkB-luc-transfected cells might
simultaneously receive the Ha-rasVal12 or Ha-rasAsn17.

Luciferase Reporter Systems for Ras and NFkB Activities

The luciferase-base reporter plasmids for Ras and
NFkB activities were Pyz-luc (Galang et al, 1994,

Figure 5.
Effect of NFkB competitive peptide on Fas-L. Treated with 50 mg/ml NFkB competitive peptide for 24 hours, cells were harvested for analysis on Fas-L. a, The Fas-L
transcript was analyzed by RT-PCR. Lanes 1 and 2, U-373MG; Lanes 3 and 4, U-118MG. b, Fas-L protein was detected by flow cytometry analysis using Fas-L-specific
antibody. Blank curve, NFkB competitive peptide-treated; filled curve, mock treated.
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kindly provided by Dr. Hauser, The Burnham Institute,
La Jolla, California and pNFkB-Luc (Stratagene, La
Jolla, California), respectively. The activities of lucif-
erase and b-galactosidase were determined by the
Dual-light luciferase and b-galactosidase reporter
gene assay system (Tropix, Bedford, Massachusetts).

Reversed Transcription-Polymerase Chain Reaction

Total RNA was prepared by the RNeasy Kit followed
the manufacturer’s instruction (Qiagen) and converted
to cDNA by StrataScrip-H-Reverse transcriptase in
the presence of RNAsin (Stratagene) with oligo-dT as

Figure 6.
Induction of Fas-L expression in murine 212 cells. The 212 cells were stimulated with 2.5 mM IPTG for 24 hours. Protein extract was subjected to Western blot analysis
on Ras protein using Ras-recognizing antibody and detected with ECL system. a, Identical gel was stained with Coomassie blue and served as protein loading control.
b, Fas-L protein was measured by flow cytometric analysis using Fas-L-specific antibody.
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a primer. RT-PCR on the Fas-L transcripts was per-
formed under conditions described previously (Yang
and Yang, 1998). The generated cDNA was subjected
to PCR amplification on a DNA thermal Cycler (Hybaid
Omnigene, Middlesex, UK). b-actin served as a semi-
quantitative control. PCR products were fractionated
by agarose electrophoresis, stained with ethidium
bromide, and visualized under UV light.

Flow Cytometric Analysis and Immunohistochemical
Staining

Cells were harvested with a cell scraper and sus-
pended in phosphate balanced buffer containing 1%
BSA. They were fixed with ice-cold 4% formaldehyde
for 15 minutes and then permeablized with 0.1%
Tween 20. Fas-L protein was stained with a rabbit
anti-Fas-L antibody (N-20; Santa Cruz, California),
followed by PE-conjugated rat anti-rabbit Ig antibody
(Gibco). Subsequently, cells were subjected to flow
cytometry analysis with a gate set for examining a total
of 104 cells. Fas-L of Ha-rasVal12-transfected normal
glial cells was detected by immunohistochemical
staining. Glial cells were transfected with Ha-rasVal12

and pEGFP-N1 at a ratio of 9:1, then grown and
treated on poly-L-lysine-coated slides. They were
stained in situ with the rabbit anti-Fas-L antibody
followed by the PE-conjugated rat anti-rabbit Ig. Fas-
L-positive cells were visible under a fluorescent micro-
scope.

Western Blot Analysis

On exposure to IPTG for 24 hours, 212 cells were
extracted with buffer containing 1% triton X-100, 10
mM Tris-HCl, pH 7.4, 0.15 M NaCl, 0.1 U/ml aprotinin,
and 50 mg/ml PMSF. Proteins were separated in a
12.5% SDS-polyacrylamide gel and electroblotted
onto a nitrocellulose membrane. Ras protein was
probed at first with a Ras-specific monoclonal mouse
antibody (Ab-2; Oncogene, Cambridge, Massachusetts)
followed by peroxidase-conjugated goat anti-mouse IgG
antibody (DAKO, Carpinteria, California). The immune
complexes were made visible by fluorography with an
enhanced chemiluminescence detection kit (Amersham
International PLC, Buckingham, UK).
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