Abstract
THE hydrothermal circulation of sea water through permeable ocean crust results in rock–water interactions that lead to the formation of massive sulphide deposits. These are the modern analogues of many ancient ophiolite-hosted deposits1–4, such as those exposed in Cyprus. Here we report results obtained from drilling a series of holes into an actively forming sulphide deposit on the Mid-Atlantic Ridge. A complex assemblage of sulphide–anhydrite–silica breccias provides striking evidence that such hydrothermal mounds do not grow simply by the accumulation of sulphides on the sea floor. Indeed, the deposit grows largely as an in situ breccia pile, as successive episodes of hydrothermal activity each form new hydrothermal precipitates and cement earlier deposits. During inactive periods, the collapse of sulphide chimneys, dissolution of anhydrite, and disruption by faulting cause brecciation of the deposit. The abundance of anhydrite beneath the present region of focused hydrothermal venting reflects the high temperatures ( > 150 °C) currently maintained within the mound, and implies substantial entrainment of cold sea water into the interior of the deposit. These observations demonstrate the important role of anhydrite in the growth of massive sulphide deposits, despite its absence in those preserved on land.
Access options
Subscribe to Journal
Get full journal access for 1 year
$199.00
only $3.90 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Rent or Buy article
Get time limited or full article access on ReadCube.
from$8.99
All prices are NET prices.
References
- 1
Spooner, E. T. C. in Deep Drilling Results in the Atlantic Ocean: Ocean Crust (eds Talwani, M., Harrison, C. G. & Hayes, D. E.) 429–431 (Am. Geophys. Un., Washington DC., 1978).
- 2
Spooner, E. T. C. Geol. Ass. Canada Spec. Pap. 20, 685–704 (1980).
- 3
Rona, P. A. & Scott, S. D. Econ. Geol. 88, 1935–1975 (1993).
- 4
Herzig, P. M. & Hannington, M. D. Ore Geol. Rev. (in the press).
- 5
Rona, P. A. et al. Econ. Geol. 18, 1989–2017 (1993).
- 6
Rona, P. A. et al. J. geophys. Res. 98, 9715–9730 (1993).
- 7
Rona, P. A., Klinkhammer, G., Nelsen, T. A., Trefry, J. H. & Elderfield, H. Nature 321, 33–37 (1986).
- 8
Lalou, C. et al. Earth planet. Sci. Lett. 97, 113–128 (1990).
- 9
Lalou, C. et al. J. geophys. Res. 98, 9705–9713 (1993).
- 10
Humphris, S. E., Kleinrock, M. C. & Deep-TAG Team (abstr.) Eos 75, 660 (1994).
- 11
Thompson, G., Humphris, S. E., Schroeder, B., Sulanowska, M. & Rona, P. A. Can. Mineralogist 26, 697–711 (1988).
- 12
Tivey, M. K., Humphris, S. E., Thompson, G., Hannington, M. D. & Rona, P. A. J. geophys. Res. 100, 12527–12555 (1995).
- 13
Campbell, A. C. et al. Nature 335, 514–519 (1988).
- 14
Edmond, J. M., Campbell, A. C., Palmer, M. R. & German, C. R. (abstr.) Eos 71, 1650–1651 (1990).
- 15
Edmond, J. M. et al. in Hydrothermal Vents and Processes (eds Parson, L. M., Walker, C. L. & Dixon, D. R.) 77–86 (Geol. Soc. Spec. Publ., London, 1995).
- 16
Franklin, J. M., Lydon, J. W. & Sangster, D. F. Econ. Geol. 75, 485–627 (1981).
- 17
Strens, M. R. & Cann, J. R. Tectonophysics 122, 307–324 (1986).
- 18
Strens, M. R. & Cann, J. R. Geophys. J. R. astr. Soc. 71, 225–240 (1982).
- 19
Adamides, N. G. thesis, Univ. Leicester (1984).
- 20
Constantinou, G. in Proc. Int. Ophiolite Symp. on Ophiolites (ed. Panayioutou, A.) 663–674 (Cyprus Geol. Surv. Dept., Nicosia, 1980).
- 21
Lydon, J. W. Geol. Surv. Can. Pap. 84–1A, 601–610 (1984).
- 22
Constantinou, G. Geol. Ass. Can. Spec. Pap. 14, 187–210 (1976).
Author information
Affiliations
Rights and permissions
About this article
Cite this article
Humphris, S., Herzig, P., Miller, D. et al. The internal structure of an active sea-floor massive sulphide deposit. Nature 377, 713–716 (1995). https://doi.org/10.1038/377713a0
Received:
Accepted:
Issue Date:
Further reading
-
Low-temperature silica-rich gold mineralization in mafic VMS systems: evidence from the Troodos ophiolite, Cyprus
Mineralium Deposita (2020)
-
Sub-seafloor sulfur cycling in a low-temperature barite field: A multi-proxy study from the Arctic Loki’s Castle vent field
Chemical Geology (2020)
-
Secular change and the onset of plate tectonics on Earth
Earth-Science Reviews (2020)
-
Progressive Dissolution of Titanomagnetite in High‐Temperature Hydrothermal Vents Dramatically Reduces Magnetization of Basaltic Ocean Crust
Geophysical Research Letters (2020)
-
Anhydrite‐Assisted Hydrothermal Metal Transport to the Ocean Floor—Insights From Thermo‐Hydro‐Chemical Modeling
Journal of Geophysical Research: Solid Earth (2020)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.