The internal structure of an active sea-floor massive sulphide deposit

Abstract

THE hydrothermal circulation of sea water through permeable ocean crust results in rock–water interactions that lead to the formation of massive sulphide deposits. These are the modern analogues of many ancient ophiolite-hosted deposits1–4, such as those exposed in Cyprus. Here we report results obtained from drilling a series of holes into an actively forming sulphide deposit on the Mid-Atlantic Ridge. A complex assemblage of sulphide–anhydrite–silica breccias provides striking evidence that such hydrothermal mounds do not grow simply by the accumulation of sulphides on the sea floor. Indeed, the deposit grows largely as an in situ breccia pile, as successive episodes of hydrothermal activity each form new hydrothermal precipitates and cement earlier deposits. During inactive periods, the collapse of sulphide chimneys, dissolution of anhydrite, and disruption by faulting cause brecciation of the deposit. The abundance of anhydrite beneath the present region of focused hydrothermal venting reflects the high temperatures ( > 150 °C) currently maintained within the mound, and implies substantial entrainment of cold sea water into the interior of the deposit. These observations demonstrate the important role of anhydrite in the growth of massive sulphide deposits, despite its absence in those preserved on land.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Spooner, E. T. C. in Deep Drilling Results in the Atlantic Ocean: Ocean Crust (eds Talwani, M., Harrison, C. G. & Hayes, D. E.) 429–431 (Am. Geophys. Un., Washington DC., 1978).

    Google Scholar 

  2. 2

    Spooner, E. T. C. Geol. Ass. Canada Spec. Pap. 20, 685–704 (1980).

    CAS  Google Scholar 

  3. 3

    Rona, P. A. & Scott, S. D. Econ. Geol. 88, 1935–1975 (1993).

    Article  Google Scholar 

  4. 4

    Herzig, P. M. & Hannington, M. D. Ore Geol. Rev. (in the press).

  5. 5

    Rona, P. A. et al. Econ. Geol. 18, 1989–2017 (1993).

    Article  Google Scholar 

  6. 6

    Rona, P. A. et al. J. geophys. Res. 98, 9715–9730 (1993).

    ADS  Article  Google Scholar 

  7. 7

    Rona, P. A., Klinkhammer, G., Nelsen, T. A., Trefry, J. H. & Elderfield, H. Nature 321, 33–37 (1986).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Lalou, C. et al. Earth planet. Sci. Lett. 97, 113–128 (1990).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Lalou, C. et al. J. geophys. Res. 98, 9705–9713 (1993).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Humphris, S. E., Kleinrock, M. C. & Deep-TAG Team (abstr.) Eos 75, 660 (1994).

    Google Scholar 

  11. 11

    Thompson, G., Humphris, S. E., Schroeder, B., Sulanowska, M. & Rona, P. A. Can. Mineralogist 26, 697–711 (1988).

    CAS  Google Scholar 

  12. 12

    Tivey, M. K., Humphris, S. E., Thompson, G., Hannington, M. D. & Rona, P. A. J. geophys. Res. 100, 12527–12555 (1995).

    ADS  CAS  Article  Google Scholar 

  13. 13

    Campbell, A. C. et al. Nature 335, 514–519 (1988).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Edmond, J. M., Campbell, A. C., Palmer, M. R. & German, C. R. (abstr.) Eos 71, 1650–1651 (1990).

    Google Scholar 

  15. 15

    Edmond, J. M. et al. in Hydrothermal Vents and Processes (eds Parson, L. M., Walker, C. L. & Dixon, D. R.) 77–86 (Geol. Soc. Spec. Publ., London, 1995).

    Google Scholar 

  16. 16

    Franklin, J. M., Lydon, J. W. & Sangster, D. F. Econ. Geol. 75, 485–627 (1981).

    Google Scholar 

  17. 17

    Strens, M. R. & Cann, J. R. Tectonophysics 122, 307–324 (1986).

    ADS  Article  Google Scholar 

  18. 18

    Strens, M. R. & Cann, J. R. Geophys. J. R. astr. Soc. 71, 225–240 (1982).

    ADS  Article  Google Scholar 

  19. 19

    Adamides, N. G. thesis, Univ. Leicester (1984).

  20. 20

    Constantinou, G. in Proc. Int. Ophiolite Symp. on Ophiolites (ed. Panayioutou, A.) 663–674 (Cyprus Geol. Surv. Dept., Nicosia, 1980).

    Google Scholar 

  21. 21

    Lydon, J. W. Geol. Surv. Can. Pap. 84–1A, 601–610 (1984).

    Google Scholar 

  22. 22

    Constantinou, G. Geol. Ass. Can. Spec. Pap. 14, 187–210 (1976).

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Humphris, S., Herzig, P., Miller, D. et al. The internal structure of an active sea-floor massive sulphide deposit. Nature 377, 713–716 (1995). https://doi.org/10.1038/377713a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing