Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Assembly of submicrometre ferromagnets in gallium arsenide semiconductors

Abstract

THE discovery of spin-dependent electronic phenomena in magnetic multilayers1 and granular solids2,3 has provided valuable insights into the nature of spin interactions in low-dimensional magnetic systems, and has opened the way to new technologies based on these phenomena. In the case of semiconductors, the incorporation of microscopic magnets would allow the electronic flexibility of semiconductor-based quantum structures to be combined with local magnetism4, potentially enabling the development of new tunable spin-dependent magneto-electronic and magneto-optical devices. Recent attempts to introduce ferromagnetism into III–V compound semiconductors have involved epitaxial growth of atomically thin layers, yielding two-dimensional magnetic films5 rather than localized magnetic structures. Here we describe a simple approach for fabricating discrete microscopic ferromagnets in the III–V semiconductor gallium arsenide. The semiconductor is first uniformly implanted with manganese ions. Subsequent heat treatment leads to a striking phase separation, whereby submicrometre crystals of GaMn nucleate and grow from the implanted layer. The resulting particles are ferromagnetic, with Curie temperatures exceeding room temperature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Parkin, S. S. P., Bhadra, R. & Roche, K. P. Phys. Rev. Lett. 66, 2152–2155 (1991).

    Article  ADS  CAS  Google Scholar 

  2. Berkowitz, A. E., Mitchell, J. R., Carey, M. J. & Young, A. P. Phys. Rev. Lett. 68, 3745–3748 (1992).

    Article  ADS  CAS  Google Scholar 

  3. Xiao, J. Q., Jiang, J. S. & Chien, C. L. Phys. Rev. Lett. 68, 3749–3752 (1992).

    Article  ADS  CAS  Google Scholar 

  4. Prinz, G. Science 250, 1092–1097 (1990).

    Article  ADS  CAS  Google Scholar 

  5. Tanaka, M. et al. Appl. Phys. Lett. 63, 696–698 (1993).

    Article  ADS  CAS  Google Scholar 

  6. Shechtman, D., Blech, I., Gratias, D. & Cahn, J. W. Phys. Rev. Lett. 53, 1951–1953 (1984).

    Article  ADS  CAS  Google Scholar 

  7. Tsuboya, I. & Sugihara, M. J. phys. Soc. Japan 18, 1096 (1963).

    Article  ADS  Google Scholar 

  8. Wachtel, E. & Neirl, K. J. Z. Metallkd. 56, 779–789 (1965).

    CAS  Google Scholar 

  9. Massalski, T. B., Okamoto, H., Subramanian, P. R. & Kacprzak, L. (eds) Binary Alloy Phase Diagram 2nd edn Vol. l 295 (Am. Soc. Metals, Metals Park, OH, 1990).

  10. Kikkawa, J. M., Baumberg, J. J., Awschalom, D. D., Leonard, D. & Petroff, P. M. Phys. Rev. Rapid Commun. B50, 2003–2006 (1994).

    Article  ADS  CAS  Google Scholar 

  11. Pekarek, T. M. et al. Appl. Phys. Lett. (submitted).

  12. J. Shi et al. J. appl. Phys. (submitted).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, J., Kikkawa, J., Proksch, R. et al. Assembly of submicrometre ferromagnets in gallium arsenide semiconductors. Nature 377, 707–710 (1995). https://doi.org/10.1038/377707a0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/377707a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing