Crystal structure of double-stranded DNA containing the major adduct of the anticancer drug cisplatin

Abstract

THE success of cisplatin in cancer chemotherapy derives from its ability to crosslink DNA and alter the structure. Most cisplatiná¤-DNA adducts are intrastrand d(GpG) and d(ApG) crosslinks1, which unwind and bend the duplex to facilitate the binding of proteins that contain one or more high-mobility-group (HMG) domains2. When HMG-domain proteins such as HMG1, IXR (intrastrand-crosslink recognition) protein from yeast, or human upstream-binding factor (hUBF) bind cisplatin intrastrand crosslinks, they can be diverted from their natural binding sites on the genome and shield the adducts from excision repair3-5. These activities sensitize cells to cisplatin and contribute to its cytotoxic properties. Crystallographic information about the structure of cisplatiná¤-DNA adducts has been limited to short single-stranded deoxyoligonucleotides such ascis[Pt(NH3)2{d(pGpG)}]6-8. Here we describe the X-ray structure at 2.6 Å resolution of a double-stranded DNA dodecamer containing this adduct. Our information provides, to our knowledge, the first crystallographic look at a platinated DNA duplex and should help the design of new platinum and other metal crosslinking antitumour drug candidates. Moreover, the structure reveals a unique fusion of A- and B-type DNA segments that could be of more general importance.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Fichtinger-Schepman, A. M. J., van der Veer, J. L., den Hartog, J. H. J., Lohman, P. H. M. & Reedijk, J. Biochemistry 24, 707–713 (1985).

    CAS  Article  Google Scholar 

  2. 2

    Whitehead, J. P. & Lippard, S. J. in Metal Ions in Biological Systems (eds Sigel, H. & Sigel, A.) (Marcel Dekker, New York, in the press).

  3. 3

    Brown, S. J., Kellett, P. J. & Lippard, S. J. Science 261, 603–605 (1993).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Treiber, D. K., Zhai, X., Jantzen, H.-M. & Essigmann, J. M. Proc. natn. Acad. Sci. U.S.A. 91, 5672–5676 (1994).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Huang, J. C., Zamble, D. B., Reardon, J. T., Lippard, S. J. & Sancar, A. Proc. natn. Acad. Sci. U.S.A. 91, 10394–10398 (1994).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Sherman, S. E., Gibson, D., Wang, A. H.-J. & Lippard, S. J. Science 230, 412–417 (1985).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Admiraal, G., van der Veer, J. L., de Graaff, R. A. G., den Hartog, J. H. J. & Reedijk, J. J. Am. chem. Soc. 109, 592–594 (1987).

    CAS  Article  Google Scholar 

  8. 8

    Sherman, S. E., Gibson, D., Wang, A. H. J. & Lippard, S. J. J. Am. chem. Soc. 110, 7368–7381 (1988).

    CAS  Article  Google Scholar 

  9. 9

    Rice, J. A., Crothers, D. M., Pinto, A. L. & Lippard, S. J. Proc. natn. Acad. Sci. U.S.A. 85, 4158–4161 (1988).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Bellon, S. F. & Lippard, S. J. Biophys. Chem. 35, 179–188 (1990).

    CAS  Article  Google Scholar 

  11. 11

    Bellon, S. F., Coleman, J. H. & Lippard, S. J. Biochemistry 30, 8026–8035 (1991).

    CAS  Article  Google Scholar 

  12. 12

    Wang, A. H.-J. & Teng, M.-K. J. Cryst. Growth 90, 295–310 (1988).

    ADS  CAS  Article  Google Scholar 

  13. 13

    Wang, A. H.-J., Fujii, S., van Boom, J. H. & Rich, A. Proc. natn. Acad. Sci. U.S.A. 79, 3968–3972 (1982).

    ADS  CAS  Article  Google Scholar 

  14. 14

    den Hartog, J. H. J. et al. J. biomolec. struct. Dyn. 2, 1137–1155 (1985).

    CAS  Article  Google Scholar 

  15. 15

    Sherman, S. E. & Lippard, S. J. Chem. Rev. 87, 1153–1181 (1987).

    CAS  Article  Google Scholar 

  16. 16

    Herman, F. et al. Eur. J. Biochem. 194, 119–133 (1990).

    CAS  Article  Google Scholar 

  17. 17

    Saenger, W. in Principles of Nucleic Acid Structure 226 (Springer, New York, 1984).

    Google Scholar 

  18. 18

    Frederick, C. A. et al. Eur. J. Biochem. 181, 295–307 (1989).

    CAS  Article  Google Scholar 

  19. 19

    Chow, C. S., Whitehead, J. P. & Lippard, S. J. Biochemistry 33, 15124–15130 (1994).

    CAS  Article  Google Scholar 

  20. 20

    King, C.-Y. & Weiss, M. A. Proc. natn. Acad. Sci. U.S.A. 90, 11990–11994 (1993).

    ADS  CAS  Article  Google Scholar 

  21. 21

    Werner, M. H., Huth, J. R., Gronenborn, A. M. & Clore, G. M. Cell 81, 705–714 (1995).

    CAS  Article  Google Scholar 

  22. 22

    Bruhn, S. L., Toney, J. H. & Lippard, S. J. Prog. Inorg. Chem. 38, 477–516 (1990).

    CAS  Google Scholar 

  23. 23

    Collaborative Computational Project, Number 4 Acta crystallogr. D50, 760–763 (1994).

  24. 24

    Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M. Acta. crystallogr. A47, 110–119 (1991).

    CAS  Article  Google Scholar 

  25. 25

    Brünger, A. T. X-PLOR Version 3.1. A System for X-ray Crystallography and NMR (Yale University Press, New Haven, 1992).

    Google Scholar 

  26. 26

    Brünger, A. T. Nature 355, 472–475 (1992).

    ADS  Article  Google Scholar 

  27. 27

    Lavery, R. & Sklenar, H. J. biomolec. struct. Dyn. 6, 63–91 (1988).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Takahara, P., Rosenzweig, A., Frederick, C. et al. Crystal structure of double-stranded DNA containing the major adduct of the anticancer drug cisplatin. Nature 377, 649–652 (1995). https://doi.org/10.1038/377649a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing