The observational case for a low-density Universe with a non-zero cosmological constant

Abstract

OBSERVATIONS are providing progressively tighter constraints on cosmological models advanced to explain the formation of large-scale structure in the Universe. These include recent determinations of the Hubble constant1á¤-3 (which quantifies the present expansion rate of the Universe) and measurements of the anisotropy of the cosmic microwave background4,5. Although the limits imposed by these diverse observations have occasionally led to suggestions6 that cosmology is facing a crisis, we show here that there remains a wide range of cosmological models in good concordance with these constraints. The combined observations point to models in which the matter density of the Universe falls well below the critical energy density required to halt its expansion. But they also permit a substantial contribution to the energy density from the vacuum itself (a positive ᤘcosmological constantᤙ), sufficient to recover the critical density favoured by the simplest inflationary models. The observations do not yet rule out the possibility that we live in an ever-expanding ᤘopenᤙ Universe, but a Universe having the critical energy density and a large cosmological constant appears to be favoured.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Freedman, W. L. et al. Nature 371, 757–762 (1994).

    ADS  CAS  Article  Google Scholar 

  2. 2

    Riess, A. G., Press, W. H. & Kirshner, R. P. Astrophys. J. 438, L17–L20 (1995).

    ADS  Article  Google Scholar 

  3. 3

    Hamuy, M. et al. Astrophys. J. 109, 1–13 (1995).

    Google Scholar 

  4. 4

    Smoot, G. F. et al. Astrophys. J. 396, L1–L5 (1992).

    ADS  Article  Google Scholar 

  5. 5

    Steinhardt, P. J. Int. J. mod. Phys. A10, 1091–1124 (1995).

    ADS  Article  Google Scholar 

  6. 6

    Bolte, M. & Hogan, C. J. Nature 376, 399–402 (1995).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Guth, A. H. Phys. Rev. D23, 347–356 (1981).

    ADS  CAS  Google Scholar 

  8. 8

    Linde, A. Phys. Lett. 108B, 389–392 (1982).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Albrecht, A. & Steinhardt, P. J. Phys. Rev. Lett. 48, 1220–1223 (1982).

    ADS  Article  Google Scholar 

  10. 10

    Bardeen, J., Steinhardt, P. J. & Turner, M. S. Phys. Rev. D28, 679–693 (1983).

    ADS  Google Scholar 

  11. 11

    Guth, A. H. & Pi, S.-Y. Phys. Rev. Lett. 49, 1110–1113 (1982).

    ADS  CAS  Article  Google Scholar 

  12. 12

    Starobinskii, A. A. Phys. Lett. B117, 175–178 (1982).

    Article  Google Scholar 

  13. 13

    Hawking, S. W. Phys. Lett. B115, 295–298 (1982).

    Article  Google Scholar 

  14. 14

    Harrison, E. Phys. Rev. D1, 2726–2730 (1970).

    ADS  Article  Google Scholar 

  15. 15

    Zel'dovich, Ya. B. Mon. Not. R. astr. Soc. 160, 1p–3p (1972).

    ADS  Article  Google Scholar 

  16. 16

    Peebles, P. J. E. & Yu, J. T. Astrophys. J. 162, 815–836 (1970).

    ADS  Article  Google Scholar 

  17. 17

    Davis, R. et al. Phys. Rev. Lett. 69, 1856–1859 (1994).

    ADS  Article  Google Scholar 

  18. 18

    Bunn, E. F. & Sugiyama, N. Astrophys.J. 446, 49–53 (1994).

    ADS  Article  Google Scholar 

  19. 19

    Copi, C., Schramm, D. N. & Turner, M. S. Science 267, 192–199 (1995).

    ADS  CAS  Article  Google Scholar 

  20. 20

    Kolb, E. W. & Turner, M. S. The Early Universe Ch. 9 (Addison-Wesley, Reading,MA. 1990).

    Google Scholar 

  21. 21

    Ratra, B. & Peebles, P. J. E. Astrophys. J. 432, L5–L9 (1994).

    ADS  Article  Google Scholar 

  22. 22

    Kamionkowski, M., Spergel, D. N. & Sugiyama, N. Astrophys. J. 426, L57–L60 (1994).

    ADS  Article  Google Scholar 

  23. 23

    Fukugita, M., Hogan, J.C. & Peebles, P. J. E. Nature 336, 309–312 (1993).

    ADS  Article  Google Scholar 

  24. 24

    Jimenez, R. et al. (in preparation).

  25. 25

    Carroll, S. M., Press, W. H. & Turner, E. L. A. Rev. Astrophys. 30, 499–542 (1992).

    ADS  Article  Google Scholar 

  26. 26

    Fukugita, M. & Turner, E. L. Mon. Not. R. astr. Soc. 253, 99–106 (1991).

    ADS  Article  Google Scholar 

  27. 27

    Maoz, D. & Rix, H.-W. Astrophys. J. 416, 425–443 (1993).

    ADS  Article  Google Scholar 

  28. 28

    Peebles, P. J. E. Physical Cosmology (Princeton Univ. Press, 1994).

    Google Scholar 

  29. 29

    Strauss, M. A. & Willick, J. A. Phys. Rep. (in the press).

  30. 30

    White, S. D. M., Navarro, J. F., Evrard, A. E. & Frenk, C. S. Nature 366, 429–433 (1993).

    ADS  CAS  Article  Google Scholar 

  31. 31

    Peacock, J. A. & Dodds, S. J. Mon. Not. R. astr. Soc. 267, 1020–1034 (1994).

    ADS  Article  Google Scholar 

  32. 32

    Turner, M. S., Steigman, G. & Krauss, L. Phys. Rev. Lett. 52, 2090–2093 (1984).

    ADS  CAS  Article  Google Scholar 

  33. 33

    Peebles, P. J. E. Astrophys. J. 284, 439–444 (1984).

    ADS  CAS  Article  Google Scholar 

  34. 34

    Kofman, L. & Starobinskii, A. A. Soviet Astr. Lett. 11, 271–274 (1985).

    ADS  Google Scholar 

  35. 35

    Efstathiou, G., Sutherland, W. J. & Maddox, S. J. Nature 348, 705–707 (1990).

    ADS  Article  Google Scholar 

  36. 36

    Coles, P. & Ellis, R. Nature 370, 609–702 (1994).

    ADS  Article  Google Scholar 

  37. 37

    Krauss, L. & Turner, M. S. Class. Quantum Grav. (submitted).

  38. 38

    White, S. D. M., Efstathiou, G. & Frenck, C. S. Mon. Not. R. astr. Soc. 262, 1023–1028 (1993).

    ADS  Article  Google Scholar 

  39. 39

    Bond, J. R. in Cosmology and Large Scale Structure (ed. Schaeffer, R.) (Eisevier Science Publ., in the press).

  40. 40

    Gorski, et al. Astrophys. J. 430, L89 (1994).

    ADS  Article  Google Scholar 

  41. 41

    Gorski, K., Ratra, D., Sugiyama, N. & Banday, A. J. Astrophys. J. 444, L67–L71 (1995).

    ADS  Article  Google Scholar 

  42. 42

    Bond, J. R. et al. Phys. Rev. Lett. 72, 13–16 (1994).

    ADS  CAS  Article  Google Scholar 

  43. 43

    Jungman, G., Kamionkowski, M. & Kosowsky, A. preprint astro-ph/9507080 (1985) (Syracuse Univ., 1995).

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ostriker, J., Steinhardt, P. The observational case for a low-density Universe with a non-zero cosmological constant. Nature 377, 600–602 (1995). https://doi.org/10.1038/377600a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing