Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Observation of laser-induced fluorescent cooling of a solid


THE possibility that an object might cool through its interaction with radiation was suggested as early as 1929 by Pringsheim1. After Landau2 established the basic thermodynamic consistency of such a process, certain aspects of fluorescent cooling were vigorously pursued3á¤-11. In particular, laser 'Doppler' cooling of gas-phase atoms and ions has today grown into a robust research area12á¤-15. In contrast, attempts to cool solids with light have met with limited success; non-radiative heating effects tend to dominate, and fluorescent cooling has at best resulted in a reduction in overall heating rates6. Here we report the experimental realization of net cooling of a solid with radiation. The cooling efficiencies achieved (up to 2%) are more than 104 times those observed in Doppler cooling of gases. By pumping a fluorescent cooling element with a high-efficiency diode laser, it may be possible to construct a compact, solid-state optical cryocooler, thereby allowing widespread deployment of cryogenic electronics and detectors in space and elsewhere16.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout


  1. Pringsheim, P. Z. Phys. 57, 739–746 (1929).

    Article  CAS  Google Scholar 

  2. Landau, L. J. Phys. (Moscow) 10, 503–506 (1946).

    Google Scholar 

  3. Kastler, A. J. Phys. Radium 11, 255–265 (1950).

    Article  CAS  Google Scholar 

  4. Scovil, H. E. D. & Schulz-DuBois, E. O. Phys. Rev. Lett. 2, 262–263 (1959).

    Article  ADS  Google Scholar 

  5. Yatsiv, S. in Advances in Quantum Electronics (ed. Singer, J. R.) 200–213 (Columbia Univ. Press. New York, 1961).

    Google Scholar 

  6. Kushida, T. & Geusic, J. E. Phys. Rev. Lett. 21, 1172–1175 (1968).

    Article  ADS  CAS  Google Scholar 

  7. Chang, S., Elliott, S. S., Gustafson, T. K., Hu, C. & Jain, R. K. IEEE J. Quant. Electron. 8, 527–528 (1972).

    Article  ADS  Google Scholar 

  8. Chukova, Y. P. Bull. Acad. Sci. USSR. Phys. Ser. 38, 57–59 (1974).

    Google Scholar 

  9. Chukova, Y. P. Soviet Phys. JETP 41, 613–616 (1976).

    ADS  Google Scholar 

  10. Landsberg, P. T. & Tonge, G. J. appl. Phys. 51, R1–R20 (1980).

    Article  ADS  CAS  Google Scholar 

  11. Djeu, N. & Whitney, W. T. Phys. Rev. Lett. 46, 236–239 (1981).

    Article  ADS  Google Scholar 

  12. Hänsch, T. W. & Schawlow, A. L. Opt. Commun. 13, 68–69 (1975).

    Article  ADS  Google Scholar 

  13. Phillips, W. D., Gould, P. L. & Lett, P. D. Science 239, 877–883 (1988).

    Article  ADS  CAS  Google Scholar 

  14. Cohen-Tannoudji, C. N. & Phillips, W. D. Phys. Today 43, (10). 33–40 (1990).

    Article  CAS  Google Scholar 

  15. Chu, S. Science 253, 861–866 (1991).

    Article  ADS  CAS  Google Scholar 

  16. Edwards, B. C., Buchwald, M. I., Epstein, R. I., Gosnell, T. R. & Mungan, C. E. in Proc. 9th A. AIAA/Utah State Univ. Conf. on Small Satellites (ed. Redd, F.) (Utah State Univ., Logan, in the press).

  17. Dieke, G. H. Spectra and Energy Levels of Rare Earth lons in Crystals (Interscience, New York, 1968).

    Google Scholar 

  18. Boccara, A. C., Fournier, D., Jackson, W. & Amer, N. M. Opt. Lett. 5, 377–379 (1980).

    Article  ADS  CAS  Google Scholar 

  19. Commandré, M., Bertrand, L., Albrand, G. & Pelletier, E. Proc. Soc. Photo-Opt. Instrum. Engng 805, 128–135 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Epstein, R., Buchwald, M., Edwards, B. et al. Observation of laser-induced fluorescent cooling of a solid. Nature 377, 500–503 (1995).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing