Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Polarity-specific activities of retinoic acid receptors determined by a co-repressor

Abstract

RETINOIC acid receptors (RARs) and retinoid-X receptors (RXRs) activate or repress transcription by binding as heterodimers to DNA-response elements that generally consist of two direct repeat half-sites of consensus sequence AGGTCA (reviewed in ref. 1). On response elements consisting of direct repeats spaced by five base pairs (DR + 5 elements), RAR/RXR heterodimers activate transcription in response to RAR-specific ligands, such as all-trans-retinoic acid (RA)2. In contrast, on elements consisting of direct repeats spaced by one base pair (DR + 1 elements), RAR/RXR heterodimers exhibit little or no response to activating ligands and repress RXR-dependent transcription3. Here we show that ligand-dependent transactivation by RAR on DR + 5 elements requires the dissociation of a new nuclear receptor co-repressor, N-CoR, and recruitment of the putative co-activators p140 and p160 (refs 4, 5). Surprisingly, on DR + 1 elements, N-CoR remains associated with RAR/RXR heterodimers even in the presence of RAR ligands, resulting in constitutive repression. These observations indicate that DNA-response elements can allosterically regulate RAR-co-repressor interactions to determine positive or negative regulation of gene expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Glass, C. K. Endocr. Rev. 15, 1503–1519 (1994).

    Google Scholar 

  2. Umesono, K., Murakami, K. K., Thompson, C. C. & Evans, R. M. Cell 65, 1255–1266 (1991).

    Article  CAS  Google Scholar 

  3. Mangelsdorf, D. J. et al. Cell 66, 555–561 (1991).

    Article  CAS  Google Scholar 

  4. Halachmi, S. et al. Science 264, 1455–1458 (1994).

    Article  ADS  CAS  Google Scholar 

  5. Cavailles, V., Dauvois, S., Danielian, P. S. & Parker, M. G. Proc. natn. Acad. Sci. U.S.A. 91, 10009–10013 (1994).

    Article  ADS  CAS  Google Scholar 

  6. Kurokawa, R. et al. Nature 371, 528–531 (1994).

    Article  ADS  CAS  Google Scholar 

  7. Kurokawa, R. et al. Genes Dev. 7, 1423–1435 (1993).

    Article  CAS  Google Scholar 

  8. Perlmann, T., Rangarajan, P. N., Umesono, K. & Evans, R. M. Genes Dev. 7, 1411–1422 (1993).

    Article  CAS  Google Scholar 

  9. Zechel, C. et al. EMBO J. 13, 1425–1433 (1994).

    Article  CAS  Google Scholar 

  10. Foreman, B. M., Umesono, K., Chen, J. & Evans, R. M. Cell 81, 541–550 (1995).

    Article  Google Scholar 

  11. Le Douarin, B. et al. EMBO J. 14, 2020–2033 (1995).

    Article  CAS  Google Scholar 

  12. Lee, J. W. et al. Nature 374, 91–94 (1995).

    Article  ADS  CAS  Google Scholar 

  13. Danielian, P. S., White, R., Lees, J. A. & Parker, M. G. EMBO J. 11, 1025–1033 (1992).

    Article  CAS  Google Scholar 

  14. Durand, B. et al. EMBO J. 13, 5370–5382 (1994).

    Article  CAS  Google Scholar 

  15. Barettino, D., Vivanco Ruiz, M. M. & Stunnenberg, H. G. EMBO J. 13, 3039–3049 (1994).

    Article  CAS  Google Scholar 

  16. Tone, Y., Collingwood, T. N., Adams, M. & Chatterjee, V. K. J. biol Chem. 269, 31157–31161 (1994).

    CAS  PubMed  Google Scholar 

  17. Baniahmad, A. et al. Molec. cell. Biol. 15, 76–86 (1995).

    Article  CAS  Google Scholar 

  18. Casanova, J. et al. Molec. cell Biol. 14, 5756–5765 (1995).

    Article  Google Scholar 

  19. Hörlein, A. et al. Nature 377, 397–404 (1995).

    Article  ADS  Google Scholar 

  20. Keidel, S., LeMotte, P. & Apfel, C. Molec. cell. Biol. 14, 287–298 (1994).

    Article  CAS  Google Scholar 

  21. Kaelin, W. G. Jr. et al. Cell 70, 351–364 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurokawa, R., Söderström, M., Hörlein, A. et al. Polarity-specific activities of retinoic acid receptors determined by a co-repressor. Nature 377, 451–454 (1995). https://doi.org/10.1038/377451a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/377451a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing