Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Streptococcus pneumoniae anchor to activated human cells by the receptor for platelet-activating factor


THE Gram-positive bacterium Streptococcus pneumoniae is a major cause of pneumonia, sepsis and meningitis1. Although the invasive disease is severe, some 40% of individuals harbour the pneumococcus in the nasopharynx asymptomatically2. Here we investigate the molecular elements of the encounter between host and pathogen that distinguish these different outcomes. We show that inflammatory activation of human cells shifts the targeting of the pneumococcus to a new receptor, that for the G-protein-coupled platelet-activating factor (PAF). Only virulent pneumococci engage the PAF receptor. Attachment of the bacterial phosphoryl-choline to the PAF receptor enhanced adherence, which was coupled to invasion of endothelial, epithelial and PAF-receptor-transfected cells. This progression could be arrested in vitro and in vivo by PAF-receptor-specific antagonists, suggesting a possible approach to therapy.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. Tuomanen, E., Austrian, R. & Masure, H. New Engl. J. Med. 332, 1280–1284 (1995).

    CAS  Article  Google Scholar 

  2. Austrian, R. J. Antimicrob. Chemother. 18 suppl A, 35–45 (1986).

    Article  Google Scholar 

  3. Geelen, S., Battacharyya, C. & Tuomanen, E. Infect. Immun. 61, 1538–1543 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Chao, W. & Olson, M. Biochem. J. 292, 617–622 (1993).

    CAS  Article  Google Scholar 

  5. Lasky, L. A. Science 258, 964–969 (1992).

    ADS  CAS  Article  Google Scholar 

  6. Zimmerman, G., Prescott, S. & Mclntyre, T. Immun. Today 13, 93–100 (1992).

    CAS  Article  Google Scholar 

  7. Bkaily, G. et al. Br. J. Pharmac. 110, 519–520 (1993).

    CAS  Article  Google Scholar 

  8. Bussolino, F. et al. J. biol. Chem. 269, 2877–2886 (1994).

    CAS  PubMed  Google Scholar 

  9. Heller, R. et al. J. Immun. 149, 3682–3688 (1992).

    CAS  PubMed  Google Scholar 

  10. Gardner, C. R., Laskin, J. D. & Laskin, D. J. Leuk. Biol. 53, 190–196 (1993).

    CAS  Article  Google Scholar 

  11. Sun, D., Rui, Y., Zeng, Q., Shu, J. & Shen, Y. Acta pharmac. sinica 13, 326–329 (1992).

    CAS  Google Scholar 

  12. Gerard, N. & Gerard, C. J. Immun. 152, 793–800 (1994).

    CAS  PubMed  Google Scholar 

  13. Wissner, A., Schaub, R., Sum, P., Kohler, C. & Goldstein, B. J. med. Chem. 29, 328–333 (1986).

    CAS  Article  Google Scholar 

  14. Cabellos, C. et al. J. clin. Invest. 90, 612–618 (1992).

    CAS  Article  Google Scholar 

  15. Cundell, D. & Tuomanen, E. Microb. Pathog. 17, 361–374 (1994).

    CAS  Article  Google Scholar 

  16. Krivan, H. C., Roberts, D. D. & Ginsburg, V. Proc. natn. Acad. Sci. U.S.A. 85, 6157–6161 (1988).

    ADS  CAS  Article  Google Scholar 

  17. Linder, T., Dandiles, R., Lime, D. & DeMaria, T. Microb. Pathog. 16, 435–441 (1994).

    CAS  Article  Google Scholar 

  18. Kunz, D., Gerard, N. & Gerard, C. J. biol. Chem. 267, 9101–9106 (1992).

    CAS  PubMed  Google Scholar 

  19. Windkelstein, J. & Tomasz, A. J. Immun. 120, 174–178 (1978).

    Google Scholar 

  20. Heumann, D., Barras, C., Severin, A., Glauser, M. & Tomasz, A. Infect. Immun. 62, 2715–2721 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Geelen, S., Bhattacharyya, C. & Tuomanen, E. Infect. Immun. 60, 4179–4183 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Weiser, J., Austrian, R., Sreenivasan, P. & Masure, H. Infect. Immun. 62, 2582–2589 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Stoll, L., Denning, G., Kasner, N. & Hunninghake, G. J. biol. Chem. 269, 4254–4259 (1994).

    CAS  PubMed  Google Scholar 

  24. Shirasaki, H. et al. Am. J. Respir. Cell molec. Biol. 10, 533–537 (1994).

    CAS  Article  Google Scholar 

  25. Henson, P. M., Barnes, P. J. & Banks-Schlegel, S. P. Am. Rev. Respir. Dis. 145, 726–731 (1992).

    CAS  Article  Google Scholar 

  26. Honda, Z.-I. et al. Nature 349, 342–346 (1991).

    ADS  CAS  Article  Google Scholar 

  27. Amatruda, T., Gerard, N., Gerard, C. & Simon, M. J. biol. Chem. 268, 10139–10144 (1993).

    CAS  PubMed  Google Scholar 

  28. Tuomanen, E., Liu, H., Hengstler, B., Zak, O. & Tomasz, A. J. infec. Dis. 151, 859–868 (1985).

    CAS  Article  Google Scholar 

  29. Elias, J. & Reynolds, M. Am. J. Respir. Cell molec. Biol. 3, 13–20 (1990).

    CAS  Article  Google Scholar 

  30. Isberg, R. Science 252, 934–938 (1991).

    ADS  CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cundell, D., Gerard, N., Gerard, C. et al. Streptococcus pneumoniae anchor to activated human cells by the receptor for platelet-activating factor. Nature 377, 435–438 (1995).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing