Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Attention-generated apparent motion

Abstract

MOTION perception mechanisms have recently been divided into three categories1. First-order mechanisms2-4 primarily extract motion from moving objects or features that differ from the back-ground in luminance. Second-order mechanism5,6 extract motion from moving properties, such as a moving area of flicker in which there is no difference in mean luminance between target and back-ground. These first- and second-order motion mechanisms are primarily monocular. The existence of purely binocular, interocular and various other unusual kinds of apparent motion7-13has promoted conjectures of a third-order mechanism1,14,15, but there has been no clear suggestion as to the actual computations that such a mechanism might perform. Here we demonstrate 'alternating feature' stimuli that produce apparent motion only when the observer selectively attends to one of the embedded features in the display. The latent motion in the alternating feature stimuli is invisible to first- or second-order motion mechanisms, and the direction of apparent motion depends on the particular feature attended. These findings suggest the mechanism of third-order motion: the locations of the most significant features are registered in a salience map, and motion is computed directly from this map.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Lu, Z.-L. & Sperling, G., Vision Res. 35, 2697–2722 (1995).

    Article  CAS  Google Scholar 

  2. Reichardt, W. Z. Naturf. 12b, 447–457 (1957).

    Google Scholar 

  3. van Santen, J. P. H. & Sperling, G. J. opt. Soc. Am. A1, 451–473 (1984).

    Article  ADS  CAS  Google Scholar 

  4. Adelson, E. H. & Bergen, J. R. J. opt. Soc. Am. A2, 284–299 (1985).

    Article  ADS  CAS  Google Scholar 

  5. Cavanagh, P. & Mather, G. Spatial Vision, 4, 103–129 (1989).

    Article  CAS  Google Scholar 

  6. Chubb, C. & Sperling, G. Proc. natn. Acad. Sci. U.S.A. 86, 2985 (1989).

    Article  ADS  CAS  Google Scholar 

  7. Shipley, W. G., Kennedy, F. A. & King, M. E. Am. J. Psychol. 58, 545–549 (1945).

    Article  CAS  Google Scholar 

  8. Braddick, O. J. & Adlard, A. J. in Visual psychophysics: Its psychological basis (eds Armington, J. Krauskopf, J. & Wooten, B. R.) 417–426 (Academic, New York, 1978).

    Book  Google Scholar 

  9. Shadlen, M. & Carney, T. Science 232, 95–97 (1986).

    Article  ADS  CAS  Google Scholar 

  10. Julesz, B. & Payne, R. A. Vision Res. 8, 433–444 (1968).

    Article  CAS  Google Scholar 

  11. Petersik, J. T., Hicks, K. I. & Pantle, A. J. Perception 7, 371–383 (1978).

    Article  CAS  Google Scholar 

  12. Zanker, J. M. Vision Res. 33, 553–569 (1993).

    Article  CAS  Google Scholar 

  13. Cavanagh, P., Arguin, M. & von Grunau, M. Vision Res. 29, 1197–1204 (1989).

    Article  CAS  Google Scholar 

  14. Pantle, A. & Picciano, L. Science 193, 500–502 (1976).

    Article  ADS  CAS  Google Scholar 

  15. Georgeson, M. A. & Shackleton, T. M. Vision Res. 29, 1511–1523 (1989).

    Article  CAS  Google Scholar 

  16. Victor, J. D. & Conte, M. M. Vision Res. 30, 289–301 (1990).

    Article  CAS  Google Scholar 

  17. Werkhoven, P., Sperling, G. & Chubb, C. Vision Res. 33, 463–485 (1993).

    Article  CAS  Google Scholar 

  18. van Santen, J. P. H. & Sperling, G. J. opt. Soc. Am. A2, 300–321 (1985).

    Article  ADS  CAS  Google Scholar 

  19. Hallett, P. E. in Handbook of Perception and Human Performance Ch. 10 (eds Boff, K. R., Kaufman, L. & Thomas, J. P.) (John Wiley, New York, 1986).

    Google Scholar 

  20. Treisman, A. & Gormican, S. Psychol. Rev. 95, 15–48 (1988).

    Article  CAS  Google Scholar 

  21. Kahneman, D., Treisman, A. & Gibbs, B. J. Cognitive Psychol. 24, 175–219 (1992).

    Article  CAS  Google Scholar 

  22. Cavanagh, P. Science 257, 1563–1565 (1992).

    Article  ADS  CAS  Google Scholar 

  23. Helmholtz, H. Helmholtz's Treatise on Physiological Optics 3rd edn (ed. Southall, J. P. C.) Menasha, Wisc. (Optical Society of America, Menasha, Wisconsin 1925). (Originally published in 1867).

    MATH  Google Scholar 

  24. Cave, K. R. & Wolfe, J. M. Cognitive Psychol. 22, 225–271 (1990).

    Article  CAS  Google Scholar 

  25. Shih, S. & Sperling, G. J. exp. Psychol., hum. Percept. Perform. (in the press).

  26. Sperling, G. Psychol. Monogr. 74 (1960).

  27. Sperling, G. & Weichselgartner, E. Psychol. Rev. 102, 502–532 (1995).

    Article  Google Scholar 

  28. Solomon, J. A. & Sperling, G. Vision Res. 34, 2239–2257 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lu, ZL., Sperling, G. Attention-generated apparent motion. Nature 377, 237–239 (1995). https://doi.org/10.1038/377237a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/377237a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing