Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Large changes in oceanic nutrient inventories from glacial to interglacial periods

Abstract

CHANGES in ocean chemistry and circulation have been invoked to explain the lower atmospheric CO2 concentrations of glacial periods observed in ice-core records1. The processes that modulate these concentrations are not well understood, but an increase in the nutrient inventory of the ocean is one mechanism that could lower atmospheric CO2 levels by enhancing oceanic biological productivity and CO2 storage1-3. The oceanic concentrations of one such nutrient, nitrate, may be regulated by changes in the rate at which it is degraded by bacteria (denitrification) in oxygen-deficient subsurface waters. Denitrification constitutes a significant global sink for oceanic nitrate4, and the eastern tropical North Pacific Ocean is particularly important in this respect as it accounts for at least a third of global oceanic fixed-nitrogen removal by water-column denitrification4,5. Here we present 15N/14N records from marine sediment cores, which show that water-column denitrification in the eastern tropical North Pacific Ocean was greatly diminished during glacial periods. We suggest that, because nitrate limits biological productivity in much of the modern ocean, a consequent increase in the oceanic nitrate inventory during glacial periods could have contributed to the observed decrease in atmospheric CO2 concentration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Broecker, W. S. Geochim cosmochim. Acta 46, 1689–1705 (1982).

    Article  ADS  CAS  Google Scholar 

  2. Berger, W. H. & Keir, R. S. in Climate Processes and Climate Sensitivity (eds Hansen, J. E. & Takahashi, T.) 337–351 (Geophys. Monogr. 29, Am. Geophys. Union, Washington DC, 1984).

    Book  Google Scholar 

  3. Boyle, E. A. Paleoceanography 3, 471–489 (1988).

    Article  ADS  Google Scholar 

  4. Codispoti, L. A. in Productivity of the Ocean: Present and Past (eds Berger, W. H., Smetacek, V. S. & Wefer, G.) 377–394 (Wiley, New York, 1989).

    Google Scholar 

  5. Codispoti, L. A. & Christensen, J. P. Mar. Chem. 16, 277–300 (1985).

    Article  CAS  Google Scholar 

  6. Christensen, J. P., Murray, J. W., Devol, A. H. & Codispoti, L. A. Global Biogeochem. Cycles 1, 97–116 (1987).

    Article  ADS  CAS  Google Scholar 

  7. Altabet, M. A., Francois, R., Murray, D. W. & Prell, W. L. Nature 373, 506–509 (1995).

    Article  ADS  CAS  Google Scholar 

  8. Altabet, M. A. & Francois, R. Globl biogeochem. Cycles 8, 103–116 (1994).

    Article  ADS  CAS  Google Scholar 

  9. Liu, K. & Kaplan, I. R. Limnol. Oceanogr. 34, 820–830 (1989).

    Article  ADS  CAS  Google Scholar 

  10. Codispoti, L. A. & Richards, R. A. Limnol. Oceanogr. 21, 379–388 (1976).

    Article  ADS  CAS  Google Scholar 

  11. Cline, J. D. & Kaplan, I. R. Mar. Chem. 3, 271–299 (1975).

    Article  CAS  Google Scholar 

  12. Saino, T. & Hattori, A. Deep-Sea Res. 34, 807–827 (1987).

    Article  ADS  CAS  Google Scholar 

  13. Pena, A., Lewis, M. R. & Cullen, J. J. J. geophys. Res. 99, 14255–14268 (1994).

    Article  ADS  Google Scholar 

  14. Dymond, J., Suess, E. & Lyle, M. Paleoceanography 7, 163–182 (1992).

    Article  ADS  Google Scholar 

  15. Brumsack, H. J. in North Atlantic Palaeoceanography (eds Summerhayes, C. P. & Shackleton, N. J.) 447–462 (Geol. Soc. Spec. Publ. No. 21, Blackwell Scientific, Oxford, 1986).

    Google Scholar 

  16. Ganeshram, R. S., Pedersen, T. F. & Murray, J. W. Eos 73, 309 (1992).

    Google Scholar 

  17. Garfield, P. C. Packard, T. T., Friederich, G. E. & Codispoti, L. A. J. mar. Res. 41, 747–768 (1983).

    Article  CAS  Google Scholar 

  18. Wyrtki, K. Int. J. Oceanol. Limnol. 1, 117–147 (1967).

    Google Scholar 

  19. Longhurst, A., Sathyendranath, S., Platt, T. & Caverhill, C. J. Plankton Res. (in the press).

  20. McElroy, M. B. Nature 302, 328–329 (1983).

    Article  ADS  CAS  Google Scholar 

  21. Devol, A. H. Nature 349, 319–321 (1991).

    Article  ADS  CAS  Google Scholar 

  22. Capone, D. G. & Carpenter, E. J. Science 217, 1140–1142 (1982).

    Article  ADS  CAS  Google Scholar 

  23. Hay, W. W. & Southam, J. R. in The Fate of Fossil Fuel CO2 in the Oceans (eds Andersen, N. R. & Malahoff, A.) 569–604 (Plenum, New York, 1977).

    Book  Google Scholar 

  24. Reimers, C. E. thesis, Oregon State Univ. (1981).

  25. Altabet, M. A. & Curry, W. B. Globl biogeochem. Cycles 3, 107–119 (1989).

    Article  ADS  Google Scholar 

  26. Fanning, K. A. J. geophys. Res. 97, 5693–5712 (1992).

    Article  ADS  Google Scholar 

  27. Kolber, Z. S. et al. Nature 371, 145–149 (1994).

    Article  ADS  CAS  Google Scholar 

  28. Redfield, A. C., Ketchum, B. H. & Richards, F. A. in The Sea (ed. Hill, M. N.) Vol. 2 26–77 (Wiley, New York, 1963).

    Google Scholar 

  29. Keigwin, L. D. & Jones, G. A. J. geophys. Res. 99, 12397–12410 (1994).

    Article  ADS  Google Scholar 

  30. Martinson, D. G. et al. Quat. Res. 27, 1–29 (1987).

    Article  CAS  Google Scholar 

  31. Calvert, S. E. in Facets in Modern Biogeochemistry (eds Ittekkot, V., Kempe, S., Michaelis, W. & Spitzy, A.) 326–352 (Springer, Berlin, 1990).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganeshram, R., Pedersen, T., Calvert, S. et al. Large changes in oceanic nutrient inventories from glacial to interglacial periods. Nature 376, 755–758 (1995). https://doi.org/10.1038/376755a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/376755a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing