Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Inhibition by anandamide of gap junctions and intercellular calcium signalling in striatal astrocytes

Abstract

ANANDAMIDE, an endogenous arachidonic acid derivative that is released from neurons and activates cannabinoid receptors1, may act as a transcellular cannabimimetic messenger in the central nervous system2–4. The biological actions of anandamide and the identity of its target cells are, however, still poorly documented5. Here we show that anandamide is a potent inhibitor of gap-junction conductance and dye permeability in striatal astrocytes. This inhibitory effect is specific for anandamide as compared to co-released congeners4 or structural analogues, is sensitive to pertussis toxin and to protein-alkylating agents, and is neither mimicked by cannabinoid-receptor agonists nor prevented by a cannabinoid-receptor antagonist. Glutamate released from neurons evokes calcium waves in astrocytes6 that propagate via gap junctions7–9, and may, in turn, activate neurons distant from their initiation sites in astrocytes10–12. We find that anandamide blocks the propagation of astrocyte calcium waves generated by either mechanical stimulation or local glutamate application. Thus, by regulating gap-junction permeability, anandamide may control intercellular communication in astrocytes and therefore neuron–glial interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Devane, W. A. et al. Science 258, 1946–1949 (1992).

    Article  CAS  ADS  Google Scholar 

  2. Krusza, K. K. & Gross, R. W. J. biol. Chem. 269, 14345–14348 (1994).

    Google Scholar 

  3. Devane, W. A. & Axelrod, J. Proc. natn. Acad. Sci. U.S.A. 91, 6698–6701 (1994).

    Article  CAS  ADS  Google Scholar 

  4. Di Marzo, V. et al. Nature 372, 686–691 (1994).

    Article  CAS  ADS  Google Scholar 

  5. Devane, W. A. Trends pharmacol. Sci. 15, 40–41 (1994).

    Article  CAS  Google Scholar 

  6. Dani, J. W., Chernjavsky, A. & Smith, S. J. Neuron 8, 429–440 (1992).

    Article  CAS  Google Scholar 

  7. Charles, A. C. et al. J. Cell Biol. 118, 195–201 (1992).

    Article  CAS  Google Scholar 

  8. Finkbeiner, S. M. Neuron 8, 1101–1108 (1992).

    Article  CAS  Google Scholar 

  9. Enkvist, M. O. K. & McCarthy, K. D. J. Neurochem. 59, 519–526 (1992).

    Article  CAS  Google Scholar 

  10. Nedergaard, M. Science 263, 1768–1771 (1994).

    Article  CAS  ADS  Google Scholar 

  11. Parpura, V. et al. Nature 369, 744–747 (1994).

    Article  CAS  ADS  Google Scholar 

  12. Charles, A. C. Devl Neurosci. 16, 196–206 (1994).

    Article  CAS  Google Scholar 

  13. Neyton, J. & Trautmann, A. Nature 317, 331–335 (1985).

    Article  CAS  ADS  Google Scholar 

  14. El-Fouly, M. H., Trosko, J. E. & Chang, C. Expl Cell Res 168, 422–430 (1987).

    Article  CAS  Google Scholar 

  15. Davidson, J. S., Baumgarten, I. M. & Harley, E. H. Biochem. biophys. Res. Commun. 134, 29–36 (1986).

    Article  CAS  Google Scholar 

  16. Rinaldi-Carmona, M. et al. FEBS Lett. 350, 240–244 (1994).

    Article  CAS  Google Scholar 

  17. Giaume, C., Marin, P., Cordier, J., Glowinski, J. & Prémont, J. Proc. natn. Acad. Sci. U.S.A. 88, 5577–5581 (1991).

    Article  CAS  ADS  Google Scholar 

  18. Mackie, K., Devane, W. A. & Hille, B. Molec. Pharmac. 44, 498–503 (1993).

    CAS  Google Scholar 

  19. Smith, S. Curr. Biol. 4, 807–811 (1994).

    Article  CAS  Google Scholar 

  20. Felder, C. C. et al. Proc. natn. Acad. Sci. U.S.A. 90, 7656–7660 (1993).

    Article  CAS  ADS  Google Scholar 

  21. Desarnaud, F., Cadas, H. & Piomelli, D. J. biol. Chem. 270, 6030–6035 (1995).

    Article  CAS  Google Scholar 

  22. Smith, P. B. et al. J. Pharmac. Exp. Ther. 270, 219–227 (1994).

    Google Scholar 

  23. Cornell-Bell, A., Finkbeiner, S. M., Cooper, M. S. & Smith, S. J. Science 247, 470–473 (1990).

    Article  CAS  ADS  Google Scholar 

  24. Gerfen, C. R. Trends Neurosci. 15, 133–139 (1992).

    Article  CAS  Google Scholar 

  25. Graybiel, A. M., Aosaki, T., Flaherty, A. W. & Kimura, M. Science 265, 1826–1831 (1994).

    Article  CAS  ADS  Google Scholar 

  26. Giaume, C. et al. Neuron 6, 133–143 (1991).

    Article  CAS  Google Scholar 

  27. Murphy, N. P., Cordier, J., Glowinski, J. & Prémont, J. Eur. J. Neurosci. 6, 854–860 (1994).

    Article  CAS  Google Scholar 

  28. Grynkiewicz, G., Poeni, M. & Tsien, R. J. biol. Chem. 260, 3440–3450 (1985).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venance, L., Piomelli, D., Glowinski, J. et al. Inhibition by anandamide of gap junctions and intercellular calcium signalling in striatal astrocytes. Nature 376, 590–594 (1995). https://doi.org/10.1038/376590a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/376590a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing