A model of protein synthesis based on cryo-electron microscopy of the E. coli ribosome

Article metrics

Abstract

THE ribosome is formed by assembly of proteins and nucleic acids, and synthesizes proteins according to genetic instructions in all organisms. Many of the biochemical steps of this fundamental process are known, but a detailed understanding requires a well-defined structural model of the ribosome. Electron microscopy combined with image reconstruction of two-dimensional crystals1á¤-3 or single ribosomes4 has been the most promising technique, but the resolution of the resulting models has been insufficient. Here we report a 25-Å reconstruction of the ribosome from Escherichia coli, obtained by combining 4,300 projections of ice-embedded single particles. Our new reconstruction reveals a channel in the small ribosomal subunit and a bifurcating tunnel in the large sub-unit which may constitute pathways for the incoming message and the nascent polypeptide chain, respectively. Based on these new findings, a three-dimensional model of the basic framework of protein synthesis is presented.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Yonath, A., Leonard, K. R. & Wittmann, H. G. Science 236, 813–816 (1987).

  2. 2

    Eisenstein, M. et al. Biochimie 73, 879–886 (1991).

  3. 3

    Yonath, A. & Wittmann, H. G. Trends biochem. Sci. 14, 329–335 (1989).

  4. 4

    Frank, J., Penczek, P., Grassucci, R. & Srivastava, S. J. Cell Biol. 115, 597–605 (1991).

  5. 5

    Lepault, J., Booy, F. P. & Dubochet, J. J. Microsc. 129, 89–102 (1983).

  6. 6

    Radermacher, M., Wagenknecht, T., Verschoor, A. & Frank, J. EMBO J. 6, 1107–1114 (1987).

  7. 7

    Penczek, P., Grassucci, R. & Frank, J. Ultramicroscopy 53, 251–270 (1994).

  8. 8

    Frank, J., Verschoor, A., Radermacher, M. & Wagenknecht, T. in Ribosomes (eds Hill, W. E.et al.) 107–113 (American Society for Microbiology, Washington DC, 1990).

  9. 9

    Montesano-Roditis, L. & Glitz, D. G. J. biol. Chem. 269, 6458–6470 (1994).

  10. 10

    Lim, V. et al. Nucleic Acids Res. 20, 2627–2637 (1992).

  11. 11

    Shatsky, I., Bakin, A. V., Bogdanov, A. A. & Vasiliev, V. D. Biochimie 73, 937–945 (1991).

  12. 12

    Malhotra, A. & Harvey, S. C. J. molec. Biol. 240, 308–340 (1994).

  13. 13

    Oakes, M. I. & Lake, J. A. J. molec. Biol. 211, 897–906 (1990).

  14. 14

    Bernabeu, C. & Lake, J. A. Proc. natn. Acad. Sci. U.S.A. 79, 3111–3115 (1982).

  15. 15

    Avila-Sakar, A. J. et al. J. molec. Biol. 239, 689–697 (1994).

  16. 16

    Blobel, G. & Sabatini, D. D. J. Cell Biol. 45, 130–145 (1970).

  17. 17

    Crowley, K. S., Reinhart, G. D. & Johnson, A. E. Cell 73, 1101–1115 (1993).

  18. 18

    Kudlicki, W. et al. J. biol. Chem. 270, 10650–10657 (1995).

  19. 19

    Easterwood, T. R., Major, F., Malhotra, A. & Harvey, S. C. Nucleic Acids Res. 22, 3779–3786 (1994).

  20. 20

    Sundaralingam, M., Brenman, T., Yathindra, N. & Ichikawa, T. in Structure and Conformationof Nucleic Acids and Protein-Nucleic Acid Interactions (eds Sundaralingam, M. & Rao, S. T.) 101–115 (University Park, Baltimore, 1975).

  21. 21

    Schrōder, R. R., Hofmann, W. & Menetret, J.-F. J. struct, Biol. 105, 28–34 (1990).

  22. 22

    Penczek, P., Radermacher, M. & Frank, J. Ultramicroscopy 40, 33–53 (1992).

  23. 23

    Frank, J. Q. Rev. Biophys. 23, 281–329 (1990).

  24. 24

    Gilbert, P. J. theor. Biol. 36, 105–117 (1972).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.