Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystal structure of a replication fork single-stranded DNA binding protein (T4 gp32) complexed to DNA

Abstract

THE single-stranded DNA (ssDNA) binding protein gp32 from bacteriophage T4 is essential for T4 DNA replication, recombination and repair. In vivo gp32 binds ssDNA as the replication fork advances and stimulates replisome processivity and accuracy by a factor of several hundred1. Gp32 binding affects nearly every major aspect of DNA metabolism. Among its important functions are: (1) configuring ssDNA templates for efficient use by the replisome including DNA polymerase; (2) melting out adventitious secondary structures; (3) protecting exposed ssDNA from nucleases; and (4) facilitating homologous recombination by binding ssDNA during strand displacement. We have determined the crystal structure of the gp32 DNA binding domain complexed to ssDNA at 2.2 Å resolution. The ssDNA binding cleft comprises regions from three structural subdomains and includes a positively charged surface that runs parallel to a series of hydrophobic pockets formed by clusters of aromatic side chains. Although only weak electron density is seen for the ssDNA, it indicates that the phosphate backbone contacts an electropositive cleft of the protein, placing the bases in contact with the hydrophobic pockets. The DNA mobility implied by the weak electron density may reflect the role of gp32 as a sequence-independent ssDNA chaperone allowing the largely unstructured ssDNA to slide freely through the cleft.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Karpel, R. L. in The Biology of Nonspecific DNA-Protein Interactions (ed. Revzin, A.) 103–126 (CRC, Boca Raton, FL, 1990).

    Google Scholar 

  2. Alberts, B. L. & Frey, L. Nature 227, 1313–1318 (1970).

    Article  ADS  CAS  Google Scholar 

  3. Prigodich, R. V., Casas-Finet, J., Williams, K. R., Konigsberg, W. H. & Coleman, J. E. Biochemistry 23, 522–529 (1984).

    Article  CAS  Google Scholar 

  4. Shamoo, Y. et al. Biochemistry 28, 7409–7417 (1989).

    Article  CAS  Google Scholar 

  5. Pan, T., King, G. C. & Coleman, J. E. Biochemistry 28, 8833–8839 (1989).

    Article  CAS  Google Scholar 

  6. Anderson, R. A. & Coleman, J. E. Biochemistry 14, 5485–5491 (1975).

    Article  CAS  Google Scholar 

  7. Spicer, E. K., Williams, K. R. & Konigsberg, W. H. J. biol. Chem. 254, 6433–6436 (1979).

    CAS  PubMed  Google Scholar 

  8. Giedroc, D. P., Keating, K. M., Williams, K. R. & Coleman, J. E. Biochemistry 26, 5251–5259 (1987).

    Article  CAS  Google Scholar 

  9. Giedroc, D. P., Johnson, B. A., Armitage, I. M. & Coleman, J. E. Biochemistry 28, 2410–2418 (1989).

    Article  CAS  Google Scholar 

  10. Kowalczykowski, S. C., Lonberg, N., Newport, J. W. & von Hippel, P. J. molec. Biol. 145, 75–104 (1981).

    Article  CAS  Google Scholar 

  11. Prigodich, R. V. et al. Biochemistry 25, 3666–3672 (1986).

    Article  CAS  Google Scholar 

  12. Khamis, M. I. & Maki, A. H. Biochemistry 25, 5865–5872 (1986).

    Article  CAS  Google Scholar 

  13. Shamoo, Y., Williams, K. R. & Konigsberg, W. H. Proteins Struct. Funct. Genet. 4, 1–6 (1988).

    Article  CAS  Google Scholar 

  14. Nagai, K., Oubridge, C., Jessen, T. H., Li, J. & Evans, P. R. Nature 348, 515–520 (1990).

    Article  ADS  CAS  Google Scholar 

  15. Skinner, M. M. et al. Proc. natn. Acad. Sci. U.S.A. 91, 2071–2075 (1994).

    Article  ADS  CAS  Google Scholar 

  16. Tucker, P. A. et al. EMBO J. 13, 2994–3002 (1994).

    Article  CAS  Google Scholar 

  17. Delius, H., Mantell, N. J. & Alberts, B. J. molec. Biol. 67, 341–350 (1972).

    Article  CAS  Google Scholar 

  18. van Amerongen, H., Kuil, M. E., Scheerhagen, M. A. & van Grondelle, R. Biochemistry 29, 5619–5625 (1990).

    Article  CAS  Google Scholar 

  19. Otwinowski, Z. in Data Collection and Processing (eds Sawyer, L., Isaacs, N. & Bailey, S.) 56–62 (SERC Daresbury Laboratory, Warrington, 1993).

    Google Scholar 

  20. Collaborative Computational Project, Number 4 SERC Daresbury Laboratory, Warrington, UK Acta crystallogr. D50, 760–763 (1994).

  21. Otwinowski, Z. in Isomorphous Replacement and Anomalous Scattering (eds Wolf, W., Evans, P. R. & Leslie, A. G. W.) 50–55 (SERC Daresbury Laboratory, Warrington, 1991).

    Google Scholar 

  22. Yang, W., Hendrickson, W. A., Kalman, E. T. & Crouch, R. J. J. biol. Chem. 265, 13553–13559 (1990).

    CAS  PubMed  Google Scholar 

  23. Zhang, K. Y. J. Acta crystallogr. D49, 213–222 (1993).

    CAS  Google Scholar 

  24. Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M. Acta crystallogr. A47, 110–119 (1991).

    Article  CAS  Google Scholar 

  25. Brunger, A. T. X-PLOR (Version 2.2). Howard Hughes Medical Institute and Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut.

  26. Carson, M. J. appl. Crystallogr. 24, 958–961 (1991).

    Article  Google Scholar 

  27. Kraulis, P. J. appl. Crystallogr. 24, 946–950 (1990).

    Article  Google Scholar 

  28. Nicholls, A., Sharp, K. & Honig, B. Proteins 11, 281–285 (1991).

    Article  CAS  Google Scholar 

  29. Casas-Finet, J., Fischer, K. R. & Karpel, R. L. Proc. natn. Acad. Sci. U.S.A. 89, 1050–1054 (1992).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shamoo, Y., Friedman, A., Parsons, M. et al. Crystal structure of a replication fork single-stranded DNA binding protein (T4 gp32) complexed to DNA. Nature 376, 362–366 (1995). https://doi.org/10.1038/376362a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/376362a0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing