Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nucleotide-dependent angular change in kinesin motor domain bound to tubulin

Abstract

KINESIN is a 'motor' molecule, consisting of two head domains, an α-helical coiled coil rod, and a tail part that binds to its cargo]. When expressed in a bacterial system, the head domain is functional3, and can bind to microtubules with the stoichiometry of one head per tubulin dimer. Kinesin moves along microtubules by means of a cyclic process of nucleotide binding, hydrolysis and product release4,5. We have used negative-stain electron microscopy and image analysis to study the structures of microtubules and tubulin sheets decorated with the motor domain (head) of kinesin in three states: in the presence of an unhydrolysable ATP analogue, 5″-adenylylimidodiphosphate (AMP-PNP); without nucleotides; and with adenosine 5″-diphosphate (ADP). A single kinesin head bound to a microtubule has a pear-shaped structure, with the broader end towards the 'plus' end of the microtubule under all conditions; the reverse motor, ncd, is similarly oriented. Three-dimensional maps reveal that kinesin heads have a spike that is assumed to form the attachment to the tail of a complete kinesin molecule. This spike is perpendicular to the microtubule axis in the presence of ADP, but points towards the plus end (~45á°) in the presence of AMP-PNP or absence of nucleotides. Our results provide direct evidence for a conformational change of the kinesin motor domain during the ATPase cycle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hirokawa, N. et al. Cell 56, 867–878 (1989).

    Article  CAS  Google Scholar 

  2. Scholey, J. M., Heuser, J., Yang, J. T. & Goldstein, L. S. B. Nature 338, 355–357 (1989).

    Article  ADS  CAS  Google Scholar 

  3. Yang, J. T., Saxton, W. M., Stewart, R. J., Raff, E. C. & Goldstein, L. S. B. Science 249, 42–47 (1990).

    Article  ADS  CAS  Google Scholar 

  4. Romberg, L. & Vale, R. D. Nature 361, 168–170 (1993).

    Article  ADS  CAS  Google Scholar 

  5. Gilbert, S. P., Webb, M. R., Brune, M. & Johnson, K. A. Nature 373, 671–676 (1995).

    Article  ADS  CAS  Google Scholar 

  6. Lockhart, A., Crevel, I. & Cross, R. A. J. molec. Biol. 249, 763–771 (1995).

    Article  CAS  Google Scholar 

  7. Hirose, K., Fan, J. & Amos, L. A. J. molec. Biol. (in the press).

  8. Song, Y.-H. & Mandelkow, E. J. Cell Biol. 128, 81–94 (1995).

    Article  CAS  Google Scholar 

  9. Endow, S. A. Trends biochem. Sci. 16, 221–225 (1991).

  10. Goldstein, L. S. B. Trends Cell Biol. 1, 93–98 (1991).

    Article  CAS  Google Scholar 

  11. Lanzavecchia, S., Bellon, P. L., Dallai, R. & Afzelius, B. A. J. struct. Biol. 113, 225–237 (1994).

    Article  Google Scholar 

  12. Lockhart, A. & Cross, R. A. EMBO J. 13, 751–757 (1994).

    Article  CAS  Google Scholar 

  13. Svoboda, K., Schmidt, C. F., Schnapp, B. J. & Block, S. M. Nature 365, 721–727 (1993).

    Article  ADS  CAS  Google Scholar 

  14. Kuo, S. C., Gelles, J., Steuer, E. & Sheetz, M. P. in Motor Proteins (J. Cell Science, suppl. 14) (eds Cross, R. A. & Kendrick-Jones, J.) 135–138 (Company of Biologists, Cambridge, 1991).

    Google Scholar 

  15. Hackney, D. D. Proc. natn. Acad. Sci. U.S.A. 91, 6865–6869 (1994).

    Article  ADS  CAS  Google Scholar 

  16. Schnapp, B. J., Crise, B., Sheetz, M. P., Reese, T. S. & Khan, S. Proc. natn. Acad. Sci. U.S.A. 87, 10053–10057 (1990).

    Article  ADS  CAS  Google Scholar 

  17. Howard, J., Hudspeth, A. J. & Vale, R. D. Nature 342, 154–158 (1989).

    Article  ADS  CAS  Google Scholar 

  18. Kikkawa, M., Ishikawa, T., Nakata, T., Wakabayashi, T. & Hirokawa, N. J. Cell Biol. 127, 1965–1971 (1994).

    Article  CAS  Google Scholar 

  19. Wade, R. H. & Chrétien, D. J. struct. Biol. 110, 1–27 (1993).

    Article  CAS  Google Scholar 

  20. Dallai, R. & Afzelius, B. A. J. struct. Biol. 103, 164–179 (1990).

    Article  Google Scholar 

  21. Egelman, E. Ultramicroscopy 19, 367–374 (1986).

    Article  CAS  Google Scholar 

  22. DeRosier, D. J. & Moore, P. B. J. molec. Biol. 52, 355–369 (1970).

    Article  CAS  Google Scholar 

  23. Amos, L. A. & Klug, A. J. molec. Biol. 99, 51–64 (1975).

    Article  CAS  Google Scholar 

  24. Vigers, G. P. A., Crowther, R. A. & Pearse, B. M. F. EMBO J. 5, 529–534 (1986).

    Article  CAS  Google Scholar 

  25. Huang, T. G., Suhan, J. & Hackney, D. D. J. biol. Chem. 269, 16502–16507 (1994).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirose, K., Lockhart, A., Cross, R. et al. Nucleotide-dependent angular change in kinesin motor domain bound to tubulin. Nature 376, 277–279 (1995). https://doi.org/10.1038/376277a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/376277a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing