Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Why gold is the noblest of all the metals

Abstract

THE unique role that gold plays in society is to a large extent related to the fact that it is the most noble of all metals: it is the least reactive metal towards atoms or molecules at the interface with a gas or a liquid. The inertness of gold does not reflect a general inability to form chemical bonds, however—gold forms very stable alloys with many other metals. To understand the nobleness of gold, we have studied a simple surface reaction, the dissociation of H2 on the surface of gold and of three other metals (copper, nickel and platinum) that lie close to it in the periodic table. We present self-consistent density-functional calculations of the activation barriers and chemisorption energies which clearly illustrate that nobleness is related to two factors: the degree of filling of the antibonding states on adsorption, and the degree of orbital overlap with the adsorbate. These two factors, which determine both the strength of the adsorbate-metal interaction and the energy barrier for dissociation, operate together to the maxima] detriment of adsorbate binding and subsequent reactivity on gold.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Hayden, B. E. & Lamont, C. L. A. Phys. Rev. Lett. 63, 1823–1825 (1989).

    ADS  CAS  Article  Google Scholar 

  2. 2

    Hodgson, A., Moryl, J., Traversaro, P. & Zhao, H. Nature 356, 501–504 (1992).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Michelsen, H. A., Rettner, C. T. & Auerbach, D. J. Phys. Rev. Lett. 69, 2678–2681 (1992).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Michelsen, H. A., Rettner, C. T., Auerbach, D. J. & Zare, R. N. J. Chem. Phys. 98, 8294–8307 (1993).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Berger, H. F., Leisch, M., Winkler, A. & Rendulic, K. D. Chem. Phys. Lett. 175, 425–428 (1990).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Robota, H. J., Vielhaber, W., Lin, M. C., Segner, J. & Ertl, G. Surf. Sci. 155, 101–120 (1985).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Brown, J. K., Luntz, A. & Schultz, P. A. J. chem. Phys. 95, 3767–3774 (1991).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Jaffey, D. M. & Madix, R. J. Surf. Sci. 311, 159–171 (1994).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Hammer, B., Scheffler, M., Jacobsen, K. W. & Nørskov, J. K. Phys. Rev. Lett. 73, 1400–1403 (1994).

    ADS  CAS  Article  Google Scholar 

  10. 10

    White, J. A., Bird, D. M., Payne, M. C. & Stich, I. Phys. Rev. Lett. 73, 1404–1407 (1994).

    ADS  CAS  Article  Google Scholar 

  11. 11

    Gross, A., Hammer, B., Scheffler, M. & Brenig, W. Phys. Rev. Lett. 73, 3121–3124 (1994).

    ADS  CAS  Article  Google Scholar 

  12. 12

    Feibelman, P. J. & Harris, J. Nature 372, 135–136 (1994).

    ADS  CAS  Article  Google Scholar 

  13. 13

    Hammer, B. & Scheffler, M. Phys. Rev. Lett. 74, 3487–3490 (1995).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Lundqvist, B. I., Gunnarsson, O., Hjelmberg, H. & Nørskov, J. K. Surf. Sci. 89, 196–225 (1979).

    ADS  CAS  Article  Google Scholar 

  15. 15

    Holloway, S., Lundqvist, B. I. & Nørskov, J. K. in Proc. int. Congr. on Catalysis 85–95 (Chemie, Berlin, 1984).

  16. 16

    Nørskov, J. K. Rep. Prog. Phys. 53, 1253–1295 (1990).

    ADS  Article  Google Scholar 

  17. 17

    Andersen, O. K., Jepsen, O. & Glötzel, D. Highlights of Condensed Matter Theory Vol. LXXXIX 59 (Corso Soc. Italiana di Fisica, Bologna, 1985).

    Google Scholar 

  18. 18

    Nørskov, J. K. J. chem. Phys. 90, 7461–7471 (1989).

    ADS  Article  Google Scholar 

  19. 19

    Hammer, B. & Nørskov, J. K. Surf. Sci. (submitted).

  20. 20

    Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. A. & Joannopoulos, J. D. Rev. mod. Phys. 64, 1045–1097 (1992).

    ADS  CAS  Article  Google Scholar 

  21. 21

    Perdew, J. P. et al. Phys. Rev. B46, 6671–6687 (1992).

    CAS  Article  Google Scholar 

  22. 22

    Kittel, C. Introduction to Solid State Physics (Wiley, New York, 1968).

    MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hammer, B., Norskov, J. Why gold is the noblest of all the metals. Nature 376, 238–240 (1995). https://doi.org/10.1038/376238a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing