Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ribosomal DNA phylogeny of the major extant arthropod classes and the evolution of myriapods

Abstract

THE evolutionary relationships among arthropods are of particular interest because the best-studied model system for ontogenetic pattern formation, the insect Drosophila, is a member of this phylum. Evolutionary inferences about the developmental mechanisms that have led to the various designs of the arthropod body plan depend on a knowledge of the phylogenetic framework of arthropod evolution. Based on morphological evidence1–3, but also on palaeonto-logical considerations4, the sister group of the insects is believed to be found among the myriapods. Using nuclear ribosomal gene sequences for constructing a molecular phylogeny, we provide strong evidence that the crustaceans and not the myriapods should be considered to be the sister group of the insects. Moreover, the degree of sequence divergence suggests that the diversification of the myriapods occurred during the Cambrian, Our findings have general implications for the course of land colonization by the different arthropod groups, as well as for the interpretation of primitive and derived features of arthropod morphology.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Weygoldt, P. Z. zool. Syst. Evol.-forsch. 24, 19–35 (1986).

    Article  Google Scholar 

  2. Kristensen, N. P. in The Insects of Australia 2nd edn (eds Naumann, I. D. et al.) 125–140 (Melbourne Univ. Press, 1991).

    Google Scholar 

  3. Štys, P. & Zrzavý, J. Eur. J. Ent. 91, 257–275 (1994).

    Google Scholar 

  4. Lauterbach, K.-E. Abh. naturw. Ver. Hamburg (NF) 23, 105–161 (1980).

    Google Scholar 

  5. Kumar, S., Tamura, K. & Nei, M. MEGA: Molecular Evolutionary Genetics Analysis, Version 1.01 (Pennsylvania State Univ., 1993).

    Google Scholar 

  6. Swofford, D. L. Phylogenetic Analysis Using Parsimony, 3.4.1 (Illinois Nat. Hist. Surv., Champaign, 1993).

    Google Scholar 

  7. Felsenstein, J. Phylogenetic Inference Programs (PHYLIP) (Univ. of Washington, 1989).

    Google Scholar 

  8. Felsenstein, J. Evolution 39, 791–793 (1985).

    Article  Google Scholar 

  9. Averoff, M. Akam, M. Phil. Trans. R. Soc. B347, 293–303 (1995).

    Article  Google Scholar 

  10. Dohle, W. Abh. naturw. Ver. Hamburg (NF) 23, 45–104 (1980).

    Google Scholar 

  11. Robison, R. & Kaesler, R. L. in Fossil Invertebrates (eds Boardman, R. S., Cheetham, A. H. & Rowell, A. J.) 206–220 (Blackwell, Oxford, 1987).

    Google Scholar 

  12. Jeram, A. J., Selden, P. A. & Edwards, D. Science 250, 685–661 (1990).

    Article  Google Scholar 

  13. Kukalová-Peck, J. in The Insects of Australia 2nd edn (eds Naumann, I. D. et al.) 141–179 (Melbourne Univ. Press, 1991).

    Google Scholar 

  14. Brusca, C. & Brusca, G. J. Invertebrates (ed. Sinauer, A. D.) (Sinauer Associates, Sunderland, MA, 1990).

    Google Scholar 

  15. Paulus, H. F. in Arthropod Phylogeny (ed. Gupta, A. P.) 299–371 (Van Nostrand, New York, 1979).

    Google Scholar 

  16. Weygoldt, P. in Neurobiology of Arachnids (ed. Barth, F. G.) 20–37 (Springer, New York, 1985).

    Book  Google Scholar 

  17. Anderson, D. T. Embryology and Phylogeny in Annelids and Arthropods (Pergamon, Oxford, 1973).

    Google Scholar 

  18. Whitington, P. M., Meier, T. & King, P. Wilhelm Roux Arch. dev. Biol. 199, 349–363 (1991).

    Article  Google Scholar 

  19. Whitington, P. M., Leach, D. & Sandeman, R. Development 118, 449–461 (1993).

    CAS  PubMed  Google Scholar 

  20. Manton, S. M. Phil. Trans. R. Soc. B247, 1–183 (1964).

    Article  Google Scholar 

  21. Boudreaux, H. B. Arthropod Phylogeny (ed. Gupta, A. P.) 551–584 (Van Nostrand, New York, 1979).

    Google Scholar 

  22. Robison, R. A. Nature 343, 163–164 (1990).

    Article  ADS  Google Scholar 

  23. Panganiban, G., Nagy, L. & Carroll, S. B. Curr. Biol. 4, 671–675 (1994).

    Article  CAS  Google Scholar 

  24. Huelsenbeck, J. P. & Hillis, D. M. Syst. Zool. 42, 247–264 (1993).

    Google Scholar 

  25. Gaut, B. S. & Lewis, P. O. Molec. Biol. Evol. 12, 152–162 (1995).

    Article  CAS  Google Scholar 

  26. Wu, C.-I. & Li, W.-H. Proc. natn. Acad. Sci. U.S.A. 82, 1741–1745 (1985).

    Article  ADS  CAS  Google Scholar 

  27. Hillis, D. M., Huelsenbeck, J. P. & Swofford, D. L. Nature 369, 363–364 (1994).

    Article  ADS  CAS  Google Scholar 

  28. Weir, B. S. Genetic Data Analysis (Sinauer Associates, Sunderland, MA, 1990).

    Google Scholar 

  29. Tautz, D., Hancock, J. M., Webb, D. A., Tautz, C. & Dover, G. Molec. Biol. Evol. 5, 366–376 (1988).

    CAS  PubMed  Google Scholar 

  30. Higgins, D. G. & Sharp, P. M. Gene 73, 237–244 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedrich, M., Tautz, D. Ribosomal DNA phylogeny of the major extant arthropod classes and the evolution of myriapods. Nature 376, 165–167 (1995). https://doi.org/10.1038/376165a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/376165a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing