Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Deducing the pattern of arthropod phytogeny from mitochondrial DNA rearrangements

Abstract

THE origins of arthropods and the phylogenetic relationships among their three major living groups (atelocerates, crustaceans and chelicerates) are vigorously contended. To help resolve this, we determined mitochondrial gene arrangements for a chelicerate, a myriapod, two crustaceans, an onychophoran, a mollusc and an annelid, and compared them with published gene orders of other species. The result strongly supports the monophyly of Arthropoda and of Mandibulata (atelocerates plus crustaceans) and refutes the Uniramia (atelocerates plus onychophorans). Gene arrangement comparisons are emerging as a powerful new tool for resolving ancient phylogenetic relationships.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Brusca, R. C. & Brusca, G. L. Invertebrates (Sinauer, Sunderland, Massachusetts, 1990).

    Google Scholar 

  2. Manton, S. M. & Anderson, D. T. in The Origin of Major Invertebrate Groups (ed. House, M. R.) 269–322 (Systematics Association, London, 1979).

    Google Scholar 

  3. Kukalová-Peck, J. Can. J. Zool. 70, 236–255 (1992).

    Article  Google Scholar 

  4. Boudreaux, H. B. Arthropod Phylogeny with Special Reference to Insects (Wiley, New York, 1979).

    Google Scholar 

  5. Tiegs, O. W. Q. J. microsc. Sci. 82, 165–268 (1947).

    Google Scholar 

  6. Cisne, J. L. Science 186, 13–18 (1974).

    ADS  CAS  Article  PubMed  Google Scholar 

  7. Hessler, R. R. & Newman, W. A. Fossils Strata 4, 437–459 (1975).

    Google Scholar 

  8. Valentine, J. W. Proc. natn. Acad. Sci. U.S.A. 86, 2272–2275 (1989).

    ADS  CAS  Article  Google Scholar 

  9. Lake, J. A. Proc. natn. Acad. Sci. U.S.A. 87, 763–766 (1990).

    ADS  CAS  Article  Google Scholar 

  10. Field, K. G. et al. Science 239, 748–753 (1988).

    ADS  CAS  Article  PubMed  Google Scholar 

  11. Ballard, J. W. O. et al. Science 258, 1345–1348 (1992).

    ADS  CAS  Article  PubMed  Google Scholar 

  12. Hendriks, L., van Broeckhoven, C., Vandenberghe, A., van de Peer, Y. & DeWachter, R. Eur. J. Biochem. 177, 15–20 (1988).

    CAS  Article  PubMed  Google Scholar 

  13. Boore, J. L. & Brown, W. M. Nautilus 108 (Suppl. 2), 61–78 (1994).

    Google Scholar 

  14. Wheeler, W. C., Cartwright, P. & Hayashi, C. Y. Cladistics 9, 1–39 (1993).

    Article  PubMed  Google Scholar 

  15. Felsenstein, J. Syst. Zool. 27, 401–410 (1978).

    Article  Google Scholar 

  16. Vawter, L. & Brown, W. M. Genetics 134(2), 597–608 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Patterson, C., Williams, D. M. & Humphries, C. J. A. Rev. Ecol. Syst. 24, 153–188 (1993).

    Article  Google Scholar 

  18. Adoutte, A. & Philippe, H. Experientia (Suppl.) 63, 1–30 (1993).

    CAS  Google Scholar 

  19. Wolstenholme, D. R. Int. Rev. Cytol. 141, 173–216 (1992).

    CAS  Article  PubMed  Google Scholar 

  20. Boore, J. L. & Brown, W. M. Genetics 138, 423–443 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Sankoff, D. et al. Proc. natn. Acad. Sci. U.S.A. 89, 6575–6579 (1992).

    ADS  CAS  Article  Google Scholar 

  22. Smith, M. J., Arndt, A., Gorski, S. & Fajber, E. J. molec. Evol. 36, 545–554 (1993).

    ADS  CAS  Article  PubMed  Google Scholar 

  23. Crozier, R. H. & Crozier, Y. C. Genetics 133, 97–117 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Mitchell, S. E., Cockburn, A. F. & Seawright, J. A. Genome 36, 1058–1073 (1993).

    CAS  Article  PubMed  Google Scholar 

  25. Valverde, J. R., Batuecas, B., Moratilla, C., Marco, R. & Garesse, R. J. molec. Evol. 39, 400–408 (1994).

    ADS  CAS  Article  Google Scholar 

  26. Haucke, H.-R. & Gellissen, G. Curr. Genet. 14, 471–476 (1988).

    CAS  Article  PubMed  Google Scholar 

  27. Pashley, D. P. & Ke, L. D. Molec. Biol. Evol. 9(6), 1061–1075 (1992).

    CAS  PubMed  Google Scholar 

  28. Pruess, K., Zhu, X. & Powers, T. J. med. Ent. 29(4), 644–651 (1992).

    CAS  Article  Google Scholar 

  29. Liu, H. & Beckenbach, A. T. Molec. Phylog. Evol. 1, 41–52 (1992).

    CAS  Article  Google Scholar 

  30. Maddison, W. P. & Maddison, D. R. Analysis of Phylogeny and Character Evolution (Sinauer, Sunderland, Massachusetts, 1992).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Boore, J., Collins, T., Stanton, D. et al. Deducing the pattern of arthropod phytogeny from mitochondrial DNA rearrangements. Nature 376, 163–165 (1995). https://doi.org/10.1038/376163a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/376163a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing