Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Scaling behaviour in the dynamics of an economic index


THE large-scale dynamical properties of some physical systems depend on the dynamical evolution of a large number of nonlinearly coupled subsystems. Examples include systems that exhibit self-organized criticality1 and turbulence2,3. Such systems tend to exhibit spatial and temporal scaling behaviour–power–law behaviour of a particular observable. Scaling is found in a wide range of systems, from geophysical4 to biological5. Here we explore the possibility that scaling phenomena occur in economic systemsá-especially when the economic system is one subject to precise rules, as is the case in financial markets6–8. Specifically, we show that the scaling of the probability distribution of a particular economic index–the Standard & Poor's 500–can be described by a non-gaussian process with dynamics that, for the central part of the distribution, correspond to that predicted for a Lévy stable process9–11. Scaling behaviour is observed for time intervals spanning three orders of magnitude, from 1,000 min to 1 min, the latter being close to the minimum time necessary to perform a trading transaction in a financial market. In the tails of the distribution the fall-off deviates from that for a Lévy stable process and is approximately exponential, ensuring that (as one would expect for a price difference distribution) the variance of the distribution is finite. The scaling exponent is remarkably constant over the six-year period (1984-89) of our data. This dynamical behaviour of the economic index should provide a framework within which to develop economic models.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout


  1. Bak, B., Tang, C. & Wiesenfeld, K. Phys. Rev. Lett. 59, 381–384 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Nelkin, M. Adv. Phys. 43, 143–181 (1994).

    Article  ADS  Google Scholar 

  3. Meneveau, C. & Sreenivasan, K. R. J. Fluid. Mech. 224, 429–484 (1991).

    Article  ADS  Google Scholar 

  4. Olami, Z., Feder, H. J. S. & Christensen, K. Phys. Rev. Lett. 68, 1244–1247 (1992).

    Article  ADS  CAS  Google Scholar 

  5. Peng, C.-K. et al. Phys. Rev. Lett. 70, 1343–1346 (1993).

    Article  ADS  Google Scholar 

  6. Brock, W. A. in The Economy as a Complex Evolving System (ed. Anderson, P. W., Arrow, J. K. & Pines, D.) 77–97 (Addison-Wesley, Redwood City, 1988).

    Google Scholar 

  7. Brock, W. A., Hsieh, D. A. & LeBaron, B. Nonlinear Dynamics, Chaos, and Instability. Statistical Theory and Economic Inference (MIT Press, Cambridge, MA, 1991).

    Google Scholar 

  8. Scheinkman, J. A. & LeBaron, B. J. Business 62, 311–327 (1989).

    Article  Google Scholar 

  9. Shlesinger, M. F., Frisch, U. & Zaslavsky, G. (eds) Lévy Flights and Related Phenomena in Physics (Springer, Berlin, 1995).

  10. Bouchaud, J.-P. & Georges, A. Phys. Rep. 195, 127–293 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  11. Shlesinger, M. F., Zaslavsky, G. M. & Klafter, J. Nature 363, 31–37 (1993).

    Article  ADS  CAS  Google Scholar 

  12. Bachelier, L. J. B. Théorie de la Speculation (Gauthier-Villars, Paris, 1900).

    Book  Google Scholar 

  13. Osborne, M. F. M. Oper. Res. 7, 145–173 (1959).

    Article  Google Scholar 

  14. Mandelbrot, B. B. J. Business 36, 394–419 (1963).

    Article  Google Scholar 

  15. Fama, E. F. J. Business 38, 34–105 (1965).

    Article  Google Scholar 

  16. Clark, P. K. Econometrica 41, 135–155 (1973).

    Article  MathSciNet  Google Scholar 

  17. Engle, R. F. Econometrica 50, 987–1007 (1982).

    Article  MathSciNet  Google Scholar 

  18. Bollerslev, T., Chou, R. Y. & Kroner, K. F. J. Econometrics 52, 5–59 (1992).

    Article  Google Scholar 

  19. Officer, R. R. J. Am. statist. Ass. 67, 807–812 (1972).

    Article  Google Scholar 

  20. Hsu, D.-A., Miller, R. B. & Wichern, D. W. J. Am. statist. Ass. 69, 108–113 (1974).

    Article  Google Scholar 

  21. Lau, A. H.-L., Lau, H.-S. & Wingender, J. R. J. Business Econ. Statist. 8, 217–223 (1990).

    Google Scholar 

  22. Akgiray, V. J. Business 62, 55–80 (1989).

    Article  Google Scholar 

  23. Mantegna, R. N. Physica A179, 232–242 (1991).

    Article  Google Scholar 

  24. Tucker, A. L. J. Business Econ. Statist. 10, 73–81 (1992).

    Google Scholar 

  25. Lévy, P. Théorie de I'Addition des Variables Aléatoires (Gauthier-Villars, Paris, 1937).

    Google Scholar 

  26. Brock, W. A. & Kleidon, A. W. J. Econ. Dyn. Contr. 16, 451–489 (1990).

    Article  Google Scholar 

  27. Mantegna, R. N. & Stanley, H. E. Phys. Rev. Lett. 73, 2946–2949 (1994).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  28. Shlesinger, M. F. Phys. Rev. Lett. 74, 4959 (1995).

    Article  ADS  CAS  Google Scholar 

  29. Feller, W. An Introduction to Probability Theory and Its Applications (Wiley, New York, 1971).

    MATH  Google Scholar 

  30. Akgiray, V. & Booth, G. G. J. Business Econ. Statist. 6, 51–57 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mantegna, R., Stanley, H. Scaling behaviour in the dynamics of an economic index. Nature 376, 46–49 (1995).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing