Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Fear conditioning induces associative long-term potentiation in the amygdala

An Erratum to this article was published on 19 February 1998


Long-term potentiation (LTP) is an experience-dependent form of neural plasticity believed to involve mechanisms that underlie memory formation1,2,3. LTP has been studied most extensively in the hippocampus, but the relation between hippocampal LTP and memory has been difficult to establish4,5,6. Here we explore the relation between LTP and memory in fear conditioning, an amygdala-dependent form of learning in which an innocuous conditioned stimulus (CS) elicits fear responses after being associatively paired with an aversive unconditioned stimulus (US). We have previously shown that LTP induction in pathways that transmit auditory CS information to the lateral nucleus of the amygdala (LA) increases auditory-evoked field potentials in this nucleus7. Now we show that fear conditioning alters auditory CS-evoked responses in LA in the same way as LTP induction. The changes parallel the acquisition of CS-elicited fear behaviour, are enduring, and do not occur if the CS and US remain unpaired. LTP-like associative processes thus occur during fear conditioning, and these may underlie the long-term associative plasticity that constitutes memory of the conditioning experience.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The effect of paired and unpaired training on CS-evoked field potentials and behaviour.
Figure 2: Scattergram of slope and amplitude values for each of the control and conditioned animals, before and after training.


  1. Malenka, R. C. & Nicoll, R. A. NMDA-receptor-dependent synaptic plasticity: multiple forms and mechanisms. Trends Neurosci. 16, 521–527 (1993).

    CAS  Article  Google Scholar 

  2. Bliss, T. V. P. & Collingridge, G. L. Asynaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993).

    ADS  CAS  Article  Google Scholar 

  3. Brown, T. H. & Chattarji, S. in Models of Neural Networks II (eds Domany, E., Van Hemmen, J. L. & Schulten, K.) 287–314 (Springer-Verlag, New York, (1994)).

    Book  Google Scholar 

  4. Stäubli, U. V. in Brain and Memory: Modulation and Mediation of Neuroplasticity (eds McGaugh, J. L., Weinberger, N. M. & Lynch, G.) 303–318 (Oxford Univ. Press, New York, (1995)).

    Book  Google Scholar 

  5. Barnes, C. A. Involvement of LTP in memory: Are we “searching under the streetlight?”. Neuron 15, 751–754 (1955).

    Article  Google Scholar 

  6. Eichenbaum, H. The LTP–memory connection. Nature 378, 131–132 (1995).

    ADS  CAS  Article  Google Scholar 

  7. Rogan, M. T. & LeDoux, J. E. LTP is accompanied by commensurate enhancement of auditory-evoked responses in a fear conditioning circuit. Neuron 15, 127–136 (1995).

    CAS  Article  Google Scholar 

  8. Phillips, R. G. & LeDoux, J. E. Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav. Neurosci. 106, 274–285 (1992).

    CAS  Article  Google Scholar 

  9. Rogan, M. T., Stäubli, U. V. & LeDoux, J. E. AMPA-receptor facilitation accelerates fear learning without altering the level of conditioned fear acquired. J. Neurosci. 17, 5928–5935 (1997).

    CAS  Article  Google Scholar 

  10. Kim, J. J. & Fanselow, M. S. Modality-specific retrograde amnesia of fear. Science 256, 675–677 (1992).

    ADS  CAS  Article  Google Scholar 

  11. Moser, E. I., Moser, M.-B. & Andersen, P. Potentiation of dentate synapses initiated by exploratory learning in rats: dissociation from brain temperature, motor activity, and arousal. Learn. Memory 1, 55–73 (1994).

    CAS  Google Scholar 

  12. Blanchard, R. J. & Blanchard, D. C. Passive and active reactions to fear-eliciting stimuli. J. Comp. Physiol. Psychol. 68, 129–135 (1969).

    CAS  Article  Google Scholar 

  13. Blanchard, R. J. & Blanchard, D. C. Crouching as an index of fear. J. Comp. Physiol. Psychol. 67, 370–375 (1969).

    CAS  Article  Google Scholar 

  14. Bouton, M. E. & Bolles, R. C. Conditioned fear assessed by freezing and by the suppression of three different baselines. Anim. Learn. Behav. 8, 429–434 (1980).

    Article  Google Scholar 

  15. Bolles, R. C. & Fanselow, M. S. Aperceptual-defensive-recuperative model of fear and pain. Behav. Brain Sci. 3, 291–323 (1980).

    Article  Google Scholar 

  16. Moser, E., Mathiesen, I. & Anderson, P. Association between brain temperature and dentate field potentials in exploring and swimming rats. Science 259, 1324–1326 (1993).

    ADS  CAS  Article  Google Scholar 

  17. Winson, J. & Absug, C. Neuronal transmission through hippocampal pathways dependent on behavior. J. Neurophysiol. 41, 716–732 (1978).

    CAS  Article  Google Scholar 

  18. Leung, S. Behavior-dependent evoked potentials in the hippocampal CA1 region of the rat. I. Correlation with behavior and EEG. Brain Res. 198, 95–117 (1980).

    ADS  CAS  Article  Google Scholar 

  19. Buzsaki, G., Grastyan, E., Czopf, J., Kellenyi, L. & Prohaska, O. Changes in neuronal transmission in the rat hippocampus during behavior. Brain Res. 225, 235–247 (1981).

    CAS  Article  Google Scholar 

  20. Quirk, G. J., Repa, J. C. & LeDoux, J. E. Fear conditioning enhances short-latency auditory responses of lateral amygdala neurons: parallel recordings in the freely behaving rat. Neuron 15, 1029–1039 (1995).

    CAS  Article  Google Scholar 

  21. Skelton, R. W., Scarth, A. S., Wilkie, D. M., Miller, J. J. & Philips, G. Long-term increases in dentate granule cell responsivity accompany operant conditioning. J. Neurosci. 7, 3081–3087 (1987).

    CAS  Article  Google Scholar 

  22. Deadwyler, S. A., West, M. O., Christian, E., Hampson, R. E. & Foster, T. C. Sequence-related changes in sensory-evoked potentials in the dentate gyrus: as mechanism for item-specific short-term information storage in the hippocampus. Behav. Neural Biol. 44, 201–212 (1985).

    CAS  Article  Google Scholar 

  23. Jeffrey, K. J. LTP and spatial learning — where to next? Hippocampus 7, 95–110 (1997).

    Article  Google Scholar 

  24. Farb, C. R. & LeDoux, J. E. NMDA and AMPA receptors in the lateral nucleus of the amygdala are postsynaptic to auditory thalamic afferents. Synapse 27, 106–121 (1997).

    CAS  Article  Google Scholar 

  25. Li, X., Phillips, R. G. & LeDoux, J. E. NMDA and non-NMDA receptors contribute to synaptic transmission between the medial geniculate body and the lateral nucleus of the amygdala. Exp. Brain Res. 105, 87–100 (1995).

    CAS  Article  Google Scholar 

  26. Li, X. F., Stutzmann, G. E. & LeDoux, J. L. Convergent but temporally separated inputs to lateral amygdala neurons from the auditory thalamus and auditory cortex use different postsynaptic receptors: in vivo intracellular and extracellular recordings in fear conditioning pathways. Learn. Memory 3, 229–242 (1996).

    CAS  Article  Google Scholar 

  27. Miserendino, M. J. D., Sananes, C. B., Melia, K. R. & Davis, M. Blocking of acquisition but not expression of conditioned fear-potentiated startle by NMDA antagonists in the amygdala. Nature 345, 716–718 (1990).

    ADS  CAS  Article  Google Scholar 

  28. Maren, S., Aharonov, G., Stote, D. L. & Fanselow, M. S. N-Methyl-d-Aspartate receptors in the basolateral amygdala are required for both acquisition and expression of the conditional fear in rats. Behav. Neurosci. 110, 1365–1374 (1996).

    CAS  Article  Google Scholar 

  29. Gewirtz, J. C. & Davis, M. Second-order fear conditioning prevented by blocking NMDA receptors in amygdala. Nature 388, 471–473 (1997).

    ADS  CAS  Article  Google Scholar 

  30. Rogan, M. T. & LeDoux, J. E. Intra-amygdala infusion of APV blocks both auditory evoked potentials in the lateral amygdala and thalamo-amygdala transmission, but spares cortico-amygdala transmission. Soc. Neurosci. Abstr. 21, 1930 (1995).

    Google Scholar 

Download references


We thank D. Ringach for software development and M. Hou for histology and help with the surgical preparation of subjects.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Michael T. Rogan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rogan, M., Stäubli, U. & LeDoux, J. Fear conditioning induces associative long-term potentiation in the amygdala. Nature 390, 604–607 (1997).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing