Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Synthesis and characterization of carbide nanorods

Abstract

THE properties and potential applications of carbon nanotubes filled with other materials have aroused much speculation1–5. Strategies for filling nanotubes include in situ growth in an arc reactor using metal/carbon composites2,5 and the capillarity-driven filling of open nanotubes using liquid reagents3,4. Here we report an alternative approach to the synthesis of nanoscale structures based on nanotubes, in which the tubes are converted to carbide rods by reaction with volatile oxide and/or halide species. In this way we have been able to prepare solid carbide nanoscale rods of TiC, NbC, Fe3C, SiC and BCx in high yield with typical diameters of between 2 and 30 nm and lengths of up to 20 urn. Preliminary studies show that these rods share the properties of the bulk materials (such as magnetism and superconductivity), suggesting that they might allow the investigation of the effects of confinement and reduced dimensionality on such solid-state properties. These carbide nanorods might also find technological applications in nanostructured composite materials.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ruoff, R. S. Nature 372, 731–732 (1994).

    Article  ADS  CAS  Google Scholar 

  2. Guerret-Piecourt, C., Le Bouar, Y., Loiseau, A. & Pascard, H. Nature 372, 761–764 (1994).

    Article  ADS  CAS  Google Scholar 

  3. Tsang, S. C., Chen, Y. K., Harris, P. J. F. & Green, M. L. H. Nature 372, 159–162 (1994).

    Article  ADS  CAS  Google Scholar 

  4. Ajayan, P. M. & lijima, S. Nature 361, 333–334 (1993).

    Article  ADS  CAS  Google Scholar 

  5. Seraphin, S., Zhou, D., Jiao, J., Whithers, J. C. & Loutfy, R. Nature 362, 503 (1993).

    Article  ADS  Google Scholar 

  6. Snyder, C. E. et al. Int. Patent WO 89/07163 (1989).

  7. Iijima, S. Nature 354, 56–58 (1991).

    Article  ADS  CAS  Google Scholar 

  8. Ebbesen, T. W. & Ajayan, P. M. Nature 358, 220–222 (1992).

    Article  ADS  CAS  Google Scholar 

  9. Colbert, D. T. et al. Science 266, 1218–1222 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Okada, K. & Nakajima, K. Eur. Patent Applic. EP 60388 A2 (1993).

  11. Zhou, D. & Seraphin, S. Chem. Phys. Lett. 222, 233–238 (1994).

    Article  ADS  CAS  Google Scholar 

  12. Storms, E. K. The Refractory Carbides 1–17 (Academic, New York, 1967).

    Google Scholar 

  13. Wang, L., Wada, H. & Allard, L. F. J. Mater. Res. 7, 148–163 (1992).

    Article  ADS  CAS  Google Scholar 

  14. McMahon, G., Carpenter, G. J. C. & Malis, T. F. J. Mater. Sci. 26, 5655–5663 (1991).

    Article  ADS  CAS  Google Scholar 

  15. Verma, A. R. & Krishna, P. Polymorphism and Polytypism in Crystals (Wiley, New York, 1966).

    Google Scholar 

  16. Wokulski, Z. & Wokulska, K. J. Cryst. Growth 62, 439–446 (1983).

    Article  ADS  CAS  Google Scholar 

  17. Tamari, N. & Kato, A. J. Cryst. Growth 46, 221–237 (1979).

    Article  ADS  CAS  Google Scholar 

  18. Speck, J. S., Endo, M. & Dresselhaus, M. S. J. Cryst. Growth 94, 834–848 (1989).

    Article  ADS  CAS  Google Scholar 

  19. Lundstrom, T. in Boron and Refractory Borides (ed. Matkovich, V. I.) 351–376 (Springer, New York, 1977).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai, H., Wong, E., Lu, Y. et al. Synthesis and characterization of carbide nanorods. Nature 375, 769–772 (1995). https://doi.org/10.1038/375769a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/375769a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing