Dendritic spines as basic functional units of neuronal integration

Abstract

MOST excitatory synaptic connections occur on dendritic spines1. Calcium imaging experiments have suggested that spines constitute individual calcium compartments2,3, but recent results have challenged this idea4,5. Using two-photon microscopy6 to image fluorescence with high resolution in strongly scattering tissue, we measured calcium dynamics in spines from CA1 pyramidal neurons in slices of rat hippocampus. Subthreshold synaptic stimulation and spontaneous synaptic events produced calcium accumulations that were localized to isolated spines, showed stochastic failure, and were abolished by postsynaptic blockers. Single somatic spikes induced fast-peaking calcium accumulation in spines throughout the cell. Pairing of spikes with synaptic stimulation was frequently cooperative, that is, it resulted in supralinear calcium accumulations. We conclude: (1) calcium channels exist in spine heads; (2) action potentials invade the spines; (3) spines are individual calcium compartments; and (4) spines can individually detect the temporal coincidence of pre- and postsynaptic activity, and thus serve as basic functional units of neuronal integration.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Peters, A., Palay, S. L. & Webster, H. D. The Fine Structure of the Nervous System (Oxford University Press, New York, 1991).

  2. 2

    Müller, W. & Connor, J. A. Nature 354, 73–76 (1991).

    ADS  Article  Google Scholar 

  3. 3

    Guthrie, P. B., Segal, M. & Kater, S. B. Nature 354, 78–80 (1991).

    ADS  Article  Google Scholar 

  4. 4

    Murphy, T. H., Baraban, J. M., Gil Wier, W. & Blatter, L. A. Nature 263, 529–532 (1994).

    CAS  Google Scholar 

  5. 5

    Eilers, J., Augustine, G. J. & Konnerth, A. Nature 373, 155–158 (1995).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Denk, W., Strickler, J. H. & Webb, W. W. Science 248, 73–76 (1990).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Goeppert-Mayer, M. Annln Phys. 9, 273–183 (1931).

    ADS  Article  Google Scholar 

  8. 8

    Svaasand, L. O. & Ellingsen, R. Photochem. Photobiol. 38, 293–299 (1983).

    CAS  Article  Google Scholar 

  9. 9

    Denk, W. et al. J. Neurosci. Meth. 54, 151–162 (1994).

    CAS  Article  Google Scholar 

  10. 10

    Marty, A. & Neher, E. in Single Channel Recording (eds Sakmann, B. & Neher, E.) 107–123 (Plenum, New York, 1983).

    Google Scholar 

  11. 11

    Edwards, F. A., Konnerth, A., Sakmann, B. & Takahashi, T. Pflügers Arch. 414, 600–612 (1989).

    CAS  Article  Google Scholar 

  12. 12

    Major, G., Evans, J. D. & Jack, J. B. Biophys. J. 65, 423–449 (1993).

    ADS  CAS  Article  Google Scholar 

  13. 13

    Otmakhov, N., Shirke, A. M. & Malinow, R. Neuron 10, 1101–1111 (1993).

    CAS  Article  Google Scholar 

  14. 14

    Bekkers, J. M. & Stevens, C. F. Nature 346, 724–729 (1990).

    ADS  CAS  Article  Google Scholar 

  15. 15

    Del Castillo, J. & Katz, B. J. Physiol. 124, 553–559 (1954).

    CAS  Article  Google Scholar 

  16. 16

    Gamble, E. & Koch, C. Science 236, 1311–1315 (1987).

    ADS  CAS  Article  Google Scholar 

  17. 17

    Spruston, N., Schiller, Y., Stuart, G. & Sakmann, B. Science 268, 297–300 (1995).

    ADS  CAS  Article  Google Scholar 

  18. 18

    Jaffe, D. B., Fisher, S. A. & Brown, T. H. J. Neurobiol. 25, 220–233 (1994).

    CAS  Article  Google Scholar 

  19. 19

    Alford, S., Frenguelli, B. G., Schofield, J. G. & Collingridge, G. L. J. Physiol., Lond. 469, 693–716 (1993).

    CAS  Article  Google Scholar 

  20. 20

    Llano, I., DiPolo, R. & Marty, A. Neuron 12, 663–673 (1994).

    CAS  Article  Google Scholar 

  21. 21

    Allbritton, N. L., Meyer, T. & Stryer, L. Science 258, 1812–1815 (1992).

    ADS  CAS  Article  Google Scholar 

  22. 22

    Andersen, P., Sundberg, S. H., Sveen, O. & Wigstrom, H. Nature 266, 736–737 (1977).

    ADS  CAS  Article  Google Scholar 

  23. 23

    McNaughton, B. L. & Barnes, C. A. J. comp. Neurol. 175, 439–454 (1977).

    CAS  Article  Google Scholar 

  24. 24

    Levy, W. B. & Steward, O. Brain Res. 175, 233–245 (1979).

    CAS  Article  Google Scholar 

  25. 25

    Levy, W. B. & Desmond, N. L. in Electrical Activity of the Archicortex (eds Buzsáki, G. & Vanderwolf, C. H.) (Akademiai Kiado, Budapest, 1985).

    Google Scholar 

  26. 26

    Neher, E. & Augustine, G. J. J. Physiol., Lond. 450, 273–301 (1992).

    CAS  Article  Google Scholar 

  27. 27

    Tank, D. W., Delaney, K. D. & Regehr, W. G. J. Neurosci. (in the press).

  28. 28

    Miller, S. G. & Kennedy, M. B. Cell 44, 861–870 (1986).

    CAS  Article  Google Scholar 

  29. 29

    Sobel, E. C. & Tank, D. W. Science 263, 823–826 (1994).

    ADS  CAS  Article  Google Scholar 

  30. 30

    Yuste, R., Gutnick, M. J., Saar, D., Delaney, K. D. & Tank, D. W. Neuron 13, 23–43 (1994).

    CAS  Article  Google Scholar 

  31. 31

    Blanton, M. G., LoTurco, J. J. & Kriegstein, A. R. J. Neurosci. Meth. 30, 203–210 (1989).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yuste, R., Denk, W. Dendritic spines as basic functional units of neuronal integration. Nature 375, 682–684 (1995). https://doi.org/10.1038/375682a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing