Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980

Abstract

OBSERVATIONS of atmospheric CO2 concentrations at Mauna Loa, Hawaii, and at the South Pole over the past four decades show an approximate proportionality between the rising atmospheric concentrations and industrial CO2 emissions1. This proportionality, which is most apparent during the first 20 years of the records, was disturbed in the 1980s by a disproportionately high rate of rise of atmospheric CO2, followed after 1988 by a pronounced slowing down of the growth rate. To probe the causes of these changes, we examine here the changes expected from the variations in the rates of industrial CO2 emissions over this time2, and also from influences of climate such as El Niño events. We use the13C/12C ratio of atmospheric CO2 to distinguish the effects of interannual variations in biospheric and oceanic sources and sinks of carbon. We propose that the recent disproportionate rise and fall in CO2 growth rate were caused mainly by interannual variations in global air temperature (which altered both the terrestrial biospheric and the oceanic carbon sinks), and possibly also by precipitation. We suggest that the anomalous climate-induced rise in CO2 was partially masked by a slowing down in the growth rate of fossil-fuel combustion, and that the latter then exaggerated the subsequent climate-induced fall.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Keeling, C. D. et al. Aspects of Climate Variability in the Pacific and the Western Americas (ed. Peterson, D. H.) 165–236 (Geophys. Monogr. 55, Am. Geophys. Union, Washington DC, 1989).

    Google Scholar 

  2. 2

    Andres, R. J., Marland, G., Boden, T. & Bischof, S. in Proc. of the 1993 Global Change Inst. on the Carbon Cycle (eds Wigley, T. & Schimel, D.) (Cambridge Univ., London, in the press).

  3. 3

    Bacastow, R. B. & Keeling, C. D. in Workshop on the Global Effects of Carbon Dioxide from Fossil Fuels, CONF-770385 (eds Elliot, W. P. & Machta, L.) 72–90 (US Dept. of Energy, Washington DC, 1979).

    Google Scholar 

  4. 4

    Kuo, C., Lindberg, C. & Thomson, D. J. Nature 343, 709–714 (1990).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Heimann, M. & Keeling, C. D. in Aspects of Climate Variability in the Pacific and the Western Americas (ed. Peterson, D. H.) 237–275 (Geophys. Monogr. 55, Am. Geophys. Union, Washington DC, 1989).

    Google Scholar 

  6. 6

    Whorf, T. P., Keeling, C. D. & Wahlen, M. Climate Modeling & Diag. Lab. Vol. 21, 119–122 (Summary Report 1992, NOAA, Boulder, CO, 1993).

    Google Scholar 

  7. 7

    Hansen, J., Lacis, A., Ruedy, R. & Sato, M. Geophys. Res. Lett. 19, 215–218 (1992).

    ADS  Article  Google Scholar 

  8. 8

    Halpert, M. S. et al. Eos 74, 433–439 (1993).

    ADS  Article  Google Scholar 

  9. 9

    Winguth, A. M. E. et al. Globl biogeochem. Cycles 8, 39–63 (1994).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Larcher, W. Ökologie der Pflanzen (Eugen Ulmer, Stuttgart, 1984).

    Google Scholar 

  11. 11

    Houghton, R. A. Bioscience 44, 305–313 (1994).

    Article  Google Scholar 

  12. 12

    Dale, V. H., Houghton, R. A. & Hall, C. A. S. Can. J. For. Res. 21, 87–90 (1991).

    CAS  Google Scholar 

  13. 13

    Fearnside, P. M. Ambio 22, 537–545 (1993).

    Google Scholar 

  14. 14

    Grubb, M. Nature 368, 489 (1994).

    ADS  Article  Google Scholar 

  15. 15

    Conway, T. J. et al. J. geophys. Res. 99, 22831–22855 (1994).

    ADS  Article  Google Scholar 

  16. 16

    Francey, R. J. et al. Nature 373, 326–330 (1995).

    ADS  CAS  Article  Google Scholar 

  17. 17

    Sarmiento, J. L. Nature 365, 697–698 (1993).

    ADS  Article  Google Scholar 

  18. 18

    Rasmusson, E. M. & Wallace, J. M. Science 222, 1195–1202 (1983).

    ADS  CAS  Article  Google Scholar 

  19. 19

    Wyrtki, K. J.Geophys. Res. 90, 7129–7132 (1985).

    ADS  Article  Google Scholar 

  20. 20

    Rasmusson, E. M. Oceanus 27, 5–12 (1984).

    Google Scholar 

  21. 21

    Jones, P. D. et al. J. Clim. appl. Met. 25, 161–179 (1986).

    Article  Google Scholar 

  22. 22

    Jones, P. D., Raper, S. C. B. & Wigley, T. M. L. J. Clim. appl. Met. 25, 1213–1230 (1986).

    Article  Google Scholar 

  23. 23

    Jones, P. D., Wigley, T. M. L. & Wright, P. B. Report No. NDP-022/R1, CDIAC (Oak Ridge Nat. Lab., 1990).

  24. 24

    Jones, P. D. & Briffa, K. R. Holocene 2, 165–179 (1992).

    ADS  Article  Google Scholar 

  25. 25

    Eischeid, J. K. et al. Tech. Rep. TR051 (US Dept. of Energy, Washington DC, 1991).

  26. 26

    Bacastow, R. B., Keeling, C. D. & Whorf, T. P. J. geophys. Res. 90, 10529–10540 (1985).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Keeling, C., Whorf, T., Wahlen, M. et al. Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature 375, 666–670 (1995). https://doi.org/10.1038/375666a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing