A massive counter-rotating gas disk in a spiral galaxy


IN some galaxies that have little gas remaining from the epoch of galaxy formation, the gas that is present rotates in the opposite sense to the stars1–4. It is thought that this counter-rotating gas may result from the capture by a massive early-type galaxy of a gas-rich dwarf galaxy that was orbiting in the opposite sense to the main galaxy’s rotation; but as there are few examples of galaxies with counter-rotating gas, we have little information about the details of this process. Here we present optical spectra of the spiral5,6 galaxy NGC3626, which clearly show the presence of counter-rotating ionized gas; combining these results with preexisting atomic hydrogen data7 leads to an estimate of 109 M for the mass of the gas. Spiral galaxies generally contain substantial amounts of gas left over from the formation epoch, which would be co-rotating with the stars; this gas should interact strongly with the counter-rotating gas on a relatively short timescale, causing it to fall towards the centre of the galaxy. We therefore propose that the counter-rotating gas in NGC3626 has been captured recently; the merger process is just beginning.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Bettoni, D. The Messenger 37, 17–19 (1984).

    ADS  Google Scholar 

  2. 2

    Bertola, F., Buson, L. & Zeilinger, W. Astrophys. J. 401, L79–L81 (1992).

    ADS  Article  Google Scholar 

  3. 3

    Galletta, G. Astrophys. J. 318, 531–535 (1987).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Bertola, F., Bettoni, D., Buson, L. & Zeilinger, W. in Dynamics and Interaction of Galaxies (ed. Wielen, E. R.) 249–251 (Springer, Heidelberg, 1990).

    Google Scholar 

  5. 5

    Sandage, A. & Tamman, G. A Revised Shapley Ames Catalog of Bright Galaxies (Carnegie Instn of Washington, Washington DC, 1981).

    Google Scholar 

  6. 6

    Hogg, D. E., Roberts, M. S. & Sandage, A. Astr. J. 106, 907–922 (1993).

    ADS  Article  Google Scholar 

  7. 7

    van Driel, W. & van Woerden, H. Astr. Astrophys. 243, 71–92 (1991).

    ADS  CAS  Google Scholar 

  8. 8

    Dressler, A. & Sandage, A. Astrophys. J. 265, 664–680 (1983).

    ADS  Article  Google Scholar 

  9. 9

    van Driel, W., Balkowski, C. & van Woerden, H. Astr. Astrophys. 218, 49–66 (1989).

    ADS  CAS  Google Scholar 

  10. 10

    Rix, H. W., Kennicutt, R. C. Jr, Braun, R. & Walterbos, R. A. M. Astrophys. J. 438, 155–169 (1995).

    ADS  CAS  Article  Google Scholar 

  11. 11

    Bettoni, D. & Galletta, G. in Dynamics of Disc Galaxies (ed. Sundelius, B.) 317–322 (Goteborg Univ., Goteborg, 1991).

    Google Scholar 

  12. 12

    Rubin, V. Astr. J. 108, 456–467 (1994).

    ADS  Article  Google Scholar 

  13. 13

    Sage, L. J. & Galletta, G. Astrophys. J. 419, 544–552 (1993).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Bettoni, D., Galletta, G. & Osterloo, T. Mon. Not. R. astr. Soc. 248, 544–554 (1991).

    ADS  CAS  Article  Google Scholar 

  15. 15

    Rubin, V. C., Graham, J. & Kenney, D. Astrophys. J. 394, L9–L12 (1992).

    ADS  Article  Google Scholar 

  16. 16

    Rix, H. W., Franx, M., Fisher, D. & Illingworth, G. Astrophys. J. 400, L5–L8 (1992).

    ADS  CAS  Article  Google Scholar 

  17. 17

    Braun, R., Walterbos, R. & Kennicutt, R. Nature 360, 442–444 (1992).

    ADS  Article  Google Scholar 

  18. 18

    Rubin, V. Astr. J. 107, 173–183 (1994).

    ADS  CAS  Article  Google Scholar 

  19. 19

    Sandage, A. The Hubble Atlas of Galaxies (Carnegie Instn of Washington, Washington DC, 1961).

    Google Scholar 

  20. 20

    Merrifield, M. & Kuijken, K. Astrophys. J. 432, 575–589 (1994).

    ADS  Article  Google Scholar 

  21. 21

    Peterson, C. J., Rubin, V. C., Ford, W. K. Jr & Roberts, M. S. Astrophys. J. 226, 770–776 (1978).

    ADS  CAS  Article  Google Scholar 

  22. 22

    Roberts, M. S., Hogg, D. E., Bregman, J. N., Forman, R. W. & Jones, C. Astrophys. J. Suppl. Ser. 75, 751–799 (1991).

    ADS  CAS  Article  Google Scholar 

  23. 23

    Bertola, F. in Structure and Dynamics of Elliptical Galaxies (ed. de Zeeuw, T.) 135–144 (IAU Symp. No. 127, Reidel, Dordrecht, 1987).

    Google Scholar 

  24. 24

    Bertola, F. & Galletta, G. Astrophys. J. 226, L115–L118 (1978).

    ADS  CAS  Article  Google Scholar 

  25. 25

    Whitmore, B. C. et al. Astr. J. 100, 1489–1755 (1990).

    ADS  Article  Google Scholar 

  26. 26

    Bender, R. Astr. Astrophys. 202, L5–L8 (1988).

    ADS  Google Scholar 

  27. 27

    Franx, M. & Illingworth, G. D. Astrophys. J. 327, L55–L59 (1988).

    ADS  Article  Google Scholar 

  28. 28

    Wang, Z., Schweizer, F. & Scoville, N. Z. Astrophys. J. 396, 510–516 (1992).

    ADS  CAS  Article  Google Scholar 

  29. 29

    Hernquist, L. & Barnes, J. E. Nature 354, 210–214 (1991).

    ADS  Article  Google Scholar 

  30. 30

    Binney, J. & May, A. Mon. Not. R. astr. Soc. 218, 743–760 (1986).

    ADS  Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ciri, R., Bettoni, D. & Galletta, G. A massive counter-rotating gas disk in a spiral galaxy. Nature 375, 661–663 (1995). https://doi.org/10.1038/375661a0

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing