Antigenic oscillations and shifting immunodominance in HIV-1 infections


ATYPICAL protein antigen contains several epitopes that can be recognized by cytotoxic T lymphocytes (CTL), but in a characteristic antiviral immune response in vivo, CTL recognize only a small number of these potential epitopes, sometimes only one1–2, this phenomenon is known as immunodominance1–10. Antigenic variation within CTL epitopes has been demonstrated for the human immunodeficiency virus HIV-1 (ref. 11) and other viruses12–7 and such 'antigenic escape' may be responsible for viral persistence. Here we develop a new mathematical model that deals with the interaction between CTL and multiple epitopes of a genetically variable pathogen, and show that the nonlinear competition among CTL responses against different epitopes can explain immunodominance. This model suggests that an antigenically homogeneous pathogen population tends to induce a dominant response against a single epitope, whereas a heterogeneous pathogen population can stimulate complicated fluctuating responses against multiple epitopes. Antigenic variation in the immunodominant epitope can shift responses to weaker epitopes and thereby reduce immuno-logical control of the pathogen population. These ideas are consistent with detailed longitudinal studies of CTL responses in HIV-1 infected patients. For vaccine design, the model suggests that the major response should be directed against conserved epitopes even if they are subdominant.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Hill, A. B. et al. Immun. Rev. 133, 75–91 (1993).

    CAS  Article  Google Scholar 

  2. 2

    Townsend, A. & Bodmer, H. A. Rev. Immun. 7, 601–633 (1989).

    CAS  Article  Google Scholar 

  3. 3

    Adorini, L. et al. J. exp. Med. 168, 2091–2104 (1988).

    CAS  Article  Google Scholar 

  4. 4

    Liu, Z. et al. J. Immun. 151, 1852–1858 (1993).

    CAS  PubMed  Google Scholar 

  5. 5

    Sercarz, E. E. et al. A. Rev. Immun. 11, 729–766 (1993).

    CAS  Article  Google Scholar 

  6. 6

    Buus, S. et al. Science 235, 1353–1358 (1987).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Schaeffer, E. B. et al. Proc. natn. Acad. Sci. U.S.A. 86, 4649–4653 (1989).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Zinkernagel, R. M. et al. J. exp. Med. 148, 592–606 (1978).

    CAS  Article  Google Scholar 

  9. 9

    Takahashi, H. et al. Science 246, 118–121 (1989).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Gegin, C. & Lehmann-Grube, F. J. Immun. 149, 3331–3338 (1992).

    CAS  PubMed  Google Scholar 

  11. 11

    Phillips, R. E. et al. Nature 354, 453–459 (1991).

    ADS  CAS  Article  Google Scholar 

  12. 12

    Aebischer, T. et al. Proc. natn. Acad. Sci. U.S.A. 88, 11047–11051 (1991).

    ADS  CAS  Article  Google Scholar 

  13. 13

    Klenerman, P. et al. Nature 369, 403–407 (1994).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Niewiesk, S. et al. J. Virol. 69, 2649–2653 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Campos-Lima, P. et al. Science 260, 98–100 (1993).

    ADS  Article  Google Scholar 

  16. 16

    Bertoletti, A. et al. Nature 369, 407–410 (1994).

    ADS  CAS  Article  Google Scholar 

  17. 17

    Moskophidids, D. & Zinkernagel, R. M. J. Virol. 69, 2187–2193 (1995).

    Google Scholar 

  18. 18

    Nixon, D. F. et al. Nature 336, 484–487 (1988).

    ADS  CAS  Article  Google Scholar 

  19. 19

    Walker, B. D. Science 240, 64–66 (1988).

    ADS  CAS  Article  Google Scholar 

  20. 20

    McMichael, A. J. & Walker, B. D. AIDS 8, S155–S174 (1994).

    Google Scholar 

  21. 21

    Koup, R. A. et al. J. Virol. 68, 4650–4655 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Safrit, J. T. et al. J. exp. Med. 179, 463–472 (1994).

    CAS  Article  Google Scholar 

  23. 23

    Pantaleo, G. et al. Nature 370, 463–467 (1994).

    ADS  CAS  Article  Google Scholar 

  24. 24

    Nowak, M. A., May, R. M., Sigmund, K. J. theor. Biol. (in the press).

  25. 25

    Bangham, C. R. M. & McMichael, A. J. in T-cell Immunity to Viruses in T Cells (eds Feldmann, M., Lamb, J., Owen, M. J.) 281–310 (Wiley, New York, 1989).

    Google Scholar 

  26. 26

    Carpenter, S. in Applied Virology Research 2. Virus Variability, Epidemiology, and control (eds Kurstak, E., Marusyk, R. G., Murphy, F. A. & van Regenmortel, H. V.) 99–115 (Plenum Medical Book Company, New York and London, 1990).

    Google Scholar 

  27. 27

    Nowak, M. A. et al. Science 254, 963–969 (1991).

    ADS  CAS  Article  Google Scholar 

  28. 28

    Nowak, M. A. & May, R. M. AIDS 7 (suppl. 1), S3–S18 (1993).

    Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nowak, M., May, R., Phillips, R. et al. Antigenic oscillations and shifting immunodominance in HIV-1 infections. Nature 375, 606–611 (1995).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing