Subjects

Abstract

The genome of the bacterium Borrelia burgdorferi B31, the aetiologic agent of Lyme disease, contains a linear chromosome of 910,725 base pairs and at least 17 linear and circular plasmids with a combined size of more than 533,000 base pairs. The chromosome contains 853 genes encoding a basic set of proteins for DNA replication, transcription, translation, solute transport and energy metabolism, but, like Mycoplasma genitalium, it contains no genes for cellular biosynthetic reactions. Because B. burgdorferi and M. genitalium are distantly related eubacteria, we suggest that their limited metabolic capacities reflect convergent evolution by gene loss from more metabolically competent progenitors. Of 430 genes on 11 plasmids, most have no known biological function; 39% of plasmid genes are paralogues that form 47 gene families. The biological significance of the multiple plasmid-encoded genes is not clear, although they may be involved in antigenic variation or immune evasion.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Lyme arthritis: an epidemic of oligoarticular arthritis in children and adults in three Connecticut communities. Arthritis Rheum. 20, 7 (1977).

  2. 2.

    Lyme disease. New Engl. J. Med. 321, 586–596 (1989).

  3. 3.

    , , , & Borrelia burgdorferi sp. nov.: etiologic agent of Lyme disease. Int. J. Syst. Bacteriol. 34, 496–497 (1984).

  4. 4.

    Lyme disease — a tick-borne spirochetosis? Science 216, 1317–1319 (1982).

  5. 5.

    , , , & Isolation of a cultivable spirochete from lxodes ricinus ticks of Switzerland. Curr. Microbiol. 8, 123–126 (1983).

  6. 6.

    & Biology of Borrelia species. Microbiol. Rev. 50, 381–400 (1986).

  7. 7.

    , , & Linear chromosome of Borrelia burgdorferi. Res. Microbiol. 140, 507–516 (1989).

  8. 8.

    & Megabase-sized linear DNA in the bacterium Borrelia burgdorferi, the Lyme disease agent. Proc. Natl Acac Sci. USA 86, 5969–5973 (1989).

  9. 9.

    , & Physical map of the linear chromosome of the bacterium Borrelia burgdorferi 212, a causative agent of Lyme disease and localization of rRNA genes. J. Bacteriol. 174, 3766–3774 (1992).

  10. 10.

    & Linear chromosome physical and genetic map of Borrelia burgdorferi, the Lyme disease agent. Mol. Microbiol. 8, 967–980 (1993).

  11. 11.

    & Linear plasmids of the bacterium Borrelia burgdorferi have covalently closed ends. Science 237, 409–411 (1987).

  12. 12.

    Plasmid analysis of Borrelia burgdorferi, the Lyme disease agent. J. Clin. Microbiol. 26, 475–478 (1988).

  13. 13.

    , , , & Homology throughout the multiple 32-kilobase circular plasmids present in Lyme disease spirochetes. J. Bacteriol. 17, 217–227 (1997).

  14. 14.

    & Linear- and circular-plasmid copy numbers in Borrelia burgdorferi. J.Bacteriol. 174, 5251–5257 (1992).

  15. 15.

    , , & The nucleotide sequence of a linear plasmid of Borrelia burgdorferi reveals similarities to those of circular plasmids of other prokaryotes. J. Bacteriol. 178, 6625–6639 (1996).

  16. 16.

    & Circular and linear plasmids of Lyme disease spirochetes share extensive homology: characterization of a repeated DNA element. J. Bacteriol. 178, 2287–2298 (1996).

  17. 17.

    , & Changes in infectivity and plasmid profile of the Lyme disease spirochete, Borrelia burgdorferi, as a result of in vitro cultivation. Infect. Immun. 56, 1831–1836 (1988).

  18. 18.

    , , & Correlation of plasmids with infectivity of Borrelia burgdorferi sensu stricto type strain B31. Infect. Immun. 64, 3870–3876 (1996).

  19. 19.

    , , , & High- and low-infectivity phenotypes of clonal populations of in vitro-cultured Borrelia burgdorferi. Infect. Immun. 63, 2206–2212 (1995).

  20. 20.

    Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269, 496–512 (1995).

  21. 21.

    The minimal gene complement of Mycoplasma genitalium. Science 270, 397–403 (1995).

  22. 22.

    Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273, 1058–1072 (1996).

  23. 23.

    The complete genome sequence of the gastric pathogen Heliocobacter pylori. Nature 388, 539–547 (1997).

  24. 24.

    The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390, 364–370 (1997).

  25. 25.

    , , , & Linear chromosomes of Lyme disease agent spirochetes; genetic diversity and conservation of gene order. J. Bacteriol. 177, 2769–2780 (1995).

  26. 26.

    & in Bacterial Genomes: Physical Structure and Analysis (eds de Bruijn, F., Lupski, J. & Weinstock, G. J.) (Chapman and Hall, New York, in the press)

  27. 27.

    , , & Mapping of genes on the linear chromosome of the bacterium Borrelia burgdorferi: possible locations for its origin of replication. FEMS Microbiol. Lett. 99, 245–250 (1992).

  28. 28.

    Telomeres of the linear chromosomes of Lyme disease spirochetes: nucleotide sequence and possible exchange with linear plasmid telomers. Mol. Microbiol. 26, 581–596 (1997).

  29. 29.

    Functions of gene products of Escherichia coli. Microbiol. Rev. 57, 862–952 (1993).

  30. 30.

    , , & Antigenic variation in Lyme disease Borreliae by promiscuous recombination of VMP-like sequence cassettes. Cell 89, 275–285 (1997).

  31. 31.

    Complete nucleotide sequence of a circular plasmid from the Lyme disease spirochete, Borrelia burgdorferi. J. Bacteriol. 176, 2706–2717 (1994).

  32. 32.

    in DNA Replication in Eukaryotic Cells (ed. DePamphilis, M.) 775–798 (Cold Spring Harbor Laboratory Press, NY, (1996)).

  33. 33.

    Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae. Nucleic Acids Res. 24, 4420–4449 (1996).

  34. 34.

    When polymerases collide: replication and the transcriptional organization of the E. coli chromosome. Cell 53, 679–686 (1988).

  35. 35.

    Consequences of replication fork movement through transcription units in vivo. Science 258, 1362–1365 (1992).

  36. 36.

    & Genes and their organization in the replication origin region of the bacterial chromosome. Mol. Microbiol. 6, 629–634 (1992).

  37. 37.

    , , & Sequence analysis of the ribosomal RNA operon of the Lyme disease spirochete, Borrelia burgdorferi. Gene 146, 57–65 (1994).

  38. 38.

    , , & Conservation of gene arrangement and an unusual organization of rRNA genes in the linear chromosomes of Lyme disease spirochaetes Borrelia burgdorferi, B. garinii and B. afzelli. Microbiology 140, 2931–2940 (1994).

  39. 39.

    Glu-tRNAGln amidotransferase: a novel heterotrimeric enzyme required for correct decoding of glutamine codons during translation. Proc. Natl Acad. Sci. USA 94, 11819–11826 (1997).

  40. 40.

    , , & Archaeal-type lysyt-tRNA synthetase in the Lyme disease spirochete Borrelia burgdorferi. Proc. Natl Acad. Sci. USA (in the press).

  41. 41.

    , , , & Novel phosphotransferase system genes revealed by bacterial genome analysis: The complete complement of pts genes in Mycoplasma genitalium. Microb. Comp. Genom. 1, 151–164 (1996).

  42. 42.

    Sequencing and characterization of the ntp gene gluster for vacuolar-type Na+-translocating ATPase of Enterococcurs hirae. J. Biol. Chem. 269, 11037–11044 (1994).

  43. 43.

    , , , & Antibody-resistant mutants of Borrelia burgdorferi: in vitro selection and characterization. J. Exp. Med. 176, 799–809 (1992).

  44. 44.

    , , & Immunogenic integral membrane proteins of Borrelia burgdorferi are lipoproteins. Infect. Immun. 58, 983–991 (1990).

  45. 45.

    , & Cloning and sequence analysis of linear plasmid telomeres of the bacterium Borrelia burgdorferi. Mol. Microbiol. 4, 811–820 (1990).

  46. 46.

    & Juxtaposition of expressed variable antigen genes with a conserved telomere in the bacterium Borrelia hermsii. Proc. Natl Acad. Sci. USA 87, 6077–6081 (1990).

  47. 47.

    , , & Microbial gene identification using interpolated Markov models. Nucleic Acids Res. (in the press).

  48. 48.

    , & Pfam: a comprehensive database of protein families based on seed alignments. Proteins 28, 405–420 (1997).

  49. 49.

    & TopPred II: an improved software for membrane proteins structure predictions. Comput. Appl. Biosci. 10, 685–686 (1994).

Download references

Acknowledgements

We thank A. G. Barbour for isolation of the Borrelia burgdorferi strain; A. Barbour, P.Rosa, K. Tilly, J. Riberio, B. Stevenson and D. Soll for discussions; N. K. Patel for technical assistance; M.Heaney, J. Scott and A. Saeed for software and database support; and V. Sapiro, B. Vincent and D. Maas for computer system support. This work was supported by a grant to J.C.V. and C.M.F. from the G. Harold and Leila Y. Mathers Charitable Foundation.

Author information

Affiliations

  1. *The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, Maryland 20850, USA

    • Claire M. Fraser
    • , Granger G. Sutton
    • , Rebecca Clayton
    • , Owen White
    • , Karen A. Ketchum
    • , Robert Dodson
    • , Erin K. Hickey
    • , Michelle Gwinn
    • , Brian Dougherty
    • , Jean-Francois Tomb
    • , Robert D. Fleischmann
    • , Delwood Richardson
    • , Jeremy Peterson
    • , Anthony R. Kerlavage
    • , John Quackenbush
    • , Steven Salzberg
    • , Mark D. Adams
    • , Jeannine Gocayne
    • , Janice Weidman
    • , Teresa Utterback
    • , Larry Watthey
    • , Lisa McDonald
    • , Patricia Artiach
    • , Cheryl Bowman
    • , Stacey Garland
    • , Claire Fujii
    • , Matthew D. Cotton
    • , Kurt Horst
    • , Kevin Roberts
    • , Bonnie Hatch
    • , Hamilton O. Smith
    •  & J. Craig Venter
  2. †Division of Molecular Biology and Genetics, Department of Oncological Sciences, University of Utah, Salt Lake City, Utah 84132, USA

    • Sherwood Casjens
    • , Wai Mun Huang
    • , Rene van Vugt
    •  & Nanette Palmer
  3. ‡MedImmune, Inc., 35 West Watkins Mill Road, Gaithersburg, Maryland 20878, USA

    • Raju Lathigra
    •  & Mark Hanson

Authors

  1. Search for Claire M. Fraser in:

  2. Search for Sherwood Casjens in:

  3. Search for Wai Mun Huang in:

  4. Search for Granger G. Sutton in:

  5. Search for Rebecca Clayton in:

  6. Search for Raju Lathigra in:

  7. Search for Owen White in:

  8. Search for Karen A. Ketchum in:

  9. Search for Robert Dodson in:

  10. Search for Erin K. Hickey in:

  11. Search for Michelle Gwinn in:

  12. Search for Brian Dougherty in:

  13. Search for Jean-Francois Tomb in:

  14. Search for Robert D. Fleischmann in:

  15. Search for Delwood Richardson in:

  16. Search for Jeremy Peterson in:

  17. Search for Anthony R. Kerlavage in:

  18. Search for John Quackenbush in:

  19. Search for Steven Salzberg in:

  20. Search for Mark Hanson in:

  21. Search for Rene van Vugt in:

  22. Search for Nanette Palmer in:

  23. Search for Mark D. Adams in:

  24. Search for Jeannine Gocayne in:

  25. Search for Janice Weidman in:

  26. Search for Teresa Utterback in:

  27. Search for Larry Watthey in:

  28. Search for Lisa McDonald in:

  29. Search for Patricia Artiach in:

  30. Search for Cheryl Bowman in:

  31. Search for Stacey Garland in:

  32. Search for Claire Fujii in:

  33. Search for Matthew D. Cotton in:

  34. Search for Kurt Horst in:

  35. Search for Kevin Roberts in:

  36. Search for Bonnie Hatch in:

  37. Search for Hamilton O. Smith in:

  38. Search for J. Craig Venter in:

Corresponding author

Correspondence to Claire M. Fraser.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/37551

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.