Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Essential functions of synapsins I and II in synaptic vesicle regulation

Abstract

SYNAPTIC vesicles are coated by synapsins, phosphoproteins that account for 9% of the vesicle protein1-3. To analyse the functions of these proteins, we have studied knockout mice lacking either synapsin I, synapsin II, or both. Mice lacking synapsins are viable and fertile with no gross anatomical abnormalities, but experience seizures with a frequency proportional to the number of mutant alleles. Synapsin-II and double knockouts, but not synapsin-I knockouts, exhibit decreased post-tetanic potentiation and severe synaptic depression upon repetitive stimulation. Intrinsic synaptic-vesicle membrane proteins, but not peripheral membrane proteins or other synaptic proteins, are slightly decreased in individual knockouts and more severely reduced in double knockouts, as is the number of synaptic vesicles. Thus synapsins are not required for neurite outgrowth, synaptogenesis or the basic mechanics of synaptic vesicle traffic, but are essential for accelerating this traffic during repetitive stimulation. The phenotype of the synapsin knockouts could be explained either by deficient recruitment of synaptic vesicles to the active zone, or by impaired maturation of vesicles at the active zone, both of which could lead to a secondary destabilization of synaptic vesicles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Huttner, W. B., Schiebler, W., Greengard, P. & De Camilli, P. J. Cell Biol. 96, 1374–1388 (1983).

    Article  CAS  Google Scholar 

  2. De Camilli, P., Benfenati, F., Valtorta, F. & Greengard, P. A. Rev. Cell Biol. 6, 433–460 (1990).

    Article  CAS  Google Scholar 

  3. Südhof, T. C. et al. Science 245, 1474–1480 (1989).

    Article  ADS  Google Scholar 

  4. Rosahl, T. W. et al. Cell 75, 661–670 (1993).

    Article  CAS  Google Scholar 

  5. Imaizumi, K. et al. Jikken Dobutsu (Bull. exp. Anim.) 8, 6–10 (1959).

    Google Scholar 

  6. Baines, A. J. & Bennett, V. Nature 315, 410–413 (1985).

    Article  ADS  CAS  Google Scholar 

  7. Petrucci, T. C. & Morrow, J. J. Cell Biol. 105, 1355–1363 (1987).

    Article  CAS  Google Scholar 

  8. Bähler, M. & Greengard, P. Nature 326, 704–707 (1987).

    Article  ADS  Google Scholar 

  9. Steiner, J. P., Ling, E. & Bennett, V. J. biol. Chem. 262, 905–914 (1987).

    CAS  PubMed  Google Scholar 

  10. Greengard, P., Valtorta, F., Czernik, A. J. & Benfenati, F. Science 259, 780–785 (1993).

    Article  ADS  CAS  Google Scholar 

  11. Rusakov, D. A., Skibo, G. G. & Vasilenko, D. A. Neurosci. Lett. 131, 156–158 (1991).

    Article  CAS  Google Scholar 

  12. Hess, S. D., Doroshenko, P. A. & Augustine, G. J. Science 259, 1169–1172 (1993).

    Article  ADS  CAS  Google Scholar 

  13. Geppert, M. et al. Nature 369, 493–497 (1994).

    Article  ADS  CAS  Google Scholar 

  14. Zucker, R. S. A. Rev. Neurosci. 12, 13–31 (1989).

    Article  CAS  Google Scholar 

  15. McCormick, D. A., Connors, B. W., Lighthall, J. W. & Prince, D. A. J. Neurophysiol. 54, 782–806 (1985).

    Article  CAS  Google Scholar 

  16. Mandell, J. W. et al. Neuron 5, 19–33 (1990).

    Article  CAS  Google Scholar 

  17. Geppert, M. et al. EMBO J. 13, 3720–3727 (1994).

    Article  CAS  Google Scholar 

  18. Missler, M., Wolff, A., Merker, H.-J. & Wolff, J. R. J. comp. Neurol. 333, 53–67 (1993).

    Article  CAS  Google Scholar 

  19. Weibel, E. R. Stereological Methods (Academic, New York, 1979).

    Google Scholar 

  20. Woolson, R. F. in Statistical Methods for the Analysis of Biochemical Data 344–347 (Wiley, New York, 1987).

    Google Scholar 

  21. Li, C. et al. Neuron 13, 885–898 (1994).

    Article  CAS  Google Scholar 

  22. Robertson, E. J. in Teratocarcinomas and embryonic stem cells (ed. Robertson, E. J.) 71 112 (IRL, Oxford, 1987).

    Google Scholar 

  23. Soriano, P., Montgomery, C., Geske, R. & Bradley, A. Cell 64, 693–702 (1991).

    Article  CAS  Google Scholar 

  24. Adams, J. C. J. Histochem. Cytochem. 29, 775 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosahl, T., Spillane, D., Missler, M. et al. Essential functions of synapsins I and II in synaptic vesicle regulation. Nature 375, 488–493 (1995). https://doi.org/10.1038/375488a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/375488a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing