Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Essential role of neocortical acetylcholine in spatial memory


THE cholinergic system plays a crucial role in learning and memory. Lesions of cholinergic nuclei1-4, pharmacological manipulations of cholinergic systems5-8, intracerebral transplantation of fetal tissue9-11 and anatomical changes in cholinergic pathways during ageing 12-14 have all been correlated with altered cognitive behaviour. However, it has not been proved that regional acetylcholine is causally required for learning and memory. Here we describe how we achieved a permanent and selective impairment of learning and memory by damaging the nucleus basalis magno-cellularis, a nucleus that provides the major cholinergic innervation of the neocortex15,16, in adult rats. To test the hypothesis that acetylcholine is essential for restoration of cognitive function, we implanted genetically modified cells that produce acetylcholine17 into denervated neocortical target regions. After grafting, rats with increased neocortical acetylcholine levels showed a significant improvement in a spatial navigation task. Acetylcholine is thus not only necessary for learning and memory, as previously argued, but its presence within the neocortex is also sufficient to ameliorate learning deficits and restore memory following damage to the nucleus basalis.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout


  1. Alkon, D. L. et al. Brain Res. Rev. 16, 193–220 (1991).

    Article  CAS  Google Scholar 

  2. Dekker, A. J., Connor, D. J. & Thal, L. J. Neurosci. Biobehav. Rev. 15, 299–317 (1991).

    Article  CAS  Google Scholar 

  3. Page, K. J., Everitt, B. J., Robbins, T. W., Marston, H. M. & Wilkinson, L. W. Neuroscience 43, 457–472 (1991).

    Article  CAS  Google Scholar 

  4. Berger-Sweeney, J. et al. J. Neurosci. 14, 4507–4519 (1994).

    Article  CAS  Google Scholar 

  5. Decker, M. W. & McGaugh, J. L. Synapse 7, 151–168 (1991).

    Article  CAS  Google Scholar 

  6. Murray, C. L. & Fibiger, H. C. Neuroscience 14, 1025–1032 (1985).

    Article  CAS  Google Scholar 

  7. Mandel, R. J. & Thal, L. J. Psychopharmacologica 96, 421–425 (1988).

    Article  CAS  Google Scholar 

  8. Mandel, R. J., Gage, F. H. & Thal, L. J. Behav. Brain Res. 31, 221–229 (1989).

    Article  CAS  Google Scholar 

  9. Dunnett, S. B. et al. Neuroscience 16, 787–797 (1985).

    Article  CAS  Google Scholar 

  10. Gage, F. H. & Björklund, A. J. Neurosci. 6, 2837–2847 (1986).

    Article  CAS  Google Scholar 

  11. Nilsson, O. G., Shapiro, M. L., Gage, F. H., Olton, D. S. & Björklund, A. Expl Brain Res. 67, 195–215 (1987).

    Article  CAS  Google Scholar 

  12. Perry, E. K. et al. Br. med. J. 2, 1457–1459 (1978).

    Article  CAS  Google Scholar 

  13. Whitehouse, P. J. et al. Science 215, 1237–1239 (1982).

    Article  ADS  CAS  Google Scholar 

  14. Bartus, R. T., Dean, R. L., Beer, B. & Lippa, A. S. Science 217, 408–416 (1982).

    Article  ADS  CAS  Google Scholar 

  15. Fibiger, H. C. Brain Res. Rev. 4, 327–388 (1982).

    Article  Google Scholar 

  16. Mesulam, M. M., Mufson, E. J., Wainer, B. H. & Levey, A. I. Neuroscience 10, 1185–1201 (1983).

    Article  CAS  Google Scholar 

  17. Fisher, L. J. et al. J. Neumchem. 61, 1323–1332 (1993).

    Article  CAS  Google Scholar 

  18. Connor, D. J., Langlais, P. J. & Thal, L. J. Brain Res. 555, 84–90 (1991).

    Article  CAS  Google Scholar 

  19. Arendt, T. et al. Neuroscience 33, 435–462 (1989).

    Article  CAS  Google Scholar 

  20. Boegman, R. J., Cockhill, J., Jhamandas, K. & Beninger, R. J. Neuroscience 51, 129–135 (1992).

    Article  CAS  Google Scholar 

  21. Dunnett, S. B., Everitt, B. J. & Robbins, T. W. Trends Neurosci. 14, 494–501 (1991).

    Article  CAS  Google Scholar 

  22. Girod, R. et al. J. Neurosci. (in the press).

  23. Freed, W. J., Poltorak, M. & Becker, J. B. Expl. Neurol. 110, 139–166 (1990).

    Article  CAS  Google Scholar 

  24. Gage, F. H. & Fisher, L. J. Neuron 6, 1–12 (1991).

    Article  CAS  Google Scholar 

  25. Muir, J. L., Page, K. J., Sirinathsinghji, D. J. S., Robbins, T. W. & Everitt, B. J. Behav. Brain Res. 57, 123–131 (1993).

    Article  CAS  Google Scholar 

  26. Grant, S. G. N. & Silva, A. J. Trends Neurosci. 17, 71–75 (1994).

    Article  CAS  Google Scholar 

  27. Takahashi, J. S., Pinto, L. H. & Viaterna, M. H. Science 264, 1724–1733 (1994).

    Article  ADS  CAS  Google Scholar 

  28. Bliss, T. V. P. & Collingridge, G. L. Nature 361, 31–39 (1993).

    Article  ADS  CAS  Google Scholar 

  29. Paxinos, G. & Watson, C. The Rat Brain in Stereotaxic Coordinates (Academic, New York, 1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Winkler, J., Suhr, S., Gage, F. et al. Essential role of neocortical acetylcholine in spatial memory. Nature 375, 484–487 (1995).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing