Abstract
THE cholinergic system plays a crucial role in learning and memory. Lesions of cholinergic nuclei1-4, pharmacological manipulations of cholinergic systems5-8, intracerebral transplantation of fetal tissue9-11 and anatomical changes in cholinergic pathways during ageing 12-14 have all been correlated with altered cognitive behaviour. However, it has not been proved that regional acetylcholine is causally required for learning and memory. Here we describe how we achieved a permanent and selective impairment of learning and memory by damaging the nucleus basalis magno-cellularis, a nucleus that provides the major cholinergic innervation of the neocortex15,16, in adult rats. To test the hypothesis that acetylcholine is essential for restoration of cognitive function, we implanted genetically modified cells that produce acetylcholine17 into denervated neocortical target regions. After grafting, rats with increased neocortical acetylcholine levels showed a significant improvement in a spatial navigation task. Acetylcholine is thus not only necessary for learning and memory, as previously argued, but its presence within the neocortex is also sufficient to ameliorate learning deficits and restore memory following damage to the nucleus basalis.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
A novel transgenic mouse model expressing primate-specific nuclear choline acetyltransferase: insights into potential cholinergic vulnerability
Scientific Reports Open Access 21 February 2023
-
Effect of voluntary running on adult hippocampal neurogenesis in cholinergic lesioned mice
BMC Neuroscience Open Access 05 June 2009
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout
References
Alkon, D. L. et al. Brain Res. Rev. 16, 193–220 (1991).
Dekker, A. J., Connor, D. J. & Thal, L. J. Neurosci. Biobehav. Rev. 15, 299–317 (1991).
Page, K. J., Everitt, B. J., Robbins, T. W., Marston, H. M. & Wilkinson, L. W. Neuroscience 43, 457–472 (1991).
Berger-Sweeney, J. et al. J. Neurosci. 14, 4507–4519 (1994).
Decker, M. W. & McGaugh, J. L. Synapse 7, 151–168 (1991).
Murray, C. L. & Fibiger, H. C. Neuroscience 14, 1025–1032 (1985).
Mandel, R. J. & Thal, L. J. Psychopharmacologica 96, 421–425 (1988).
Mandel, R. J., Gage, F. H. & Thal, L. J. Behav. Brain Res. 31, 221–229 (1989).
Dunnett, S. B. et al. Neuroscience 16, 787–797 (1985).
Gage, F. H. & Björklund, A. J. Neurosci. 6, 2837–2847 (1986).
Nilsson, O. G., Shapiro, M. L., Gage, F. H., Olton, D. S. & Björklund, A. Expl Brain Res. 67, 195–215 (1987).
Perry, E. K. et al. Br. med. J. 2, 1457–1459 (1978).
Whitehouse, P. J. et al. Science 215, 1237–1239 (1982).
Bartus, R. T., Dean, R. L., Beer, B. & Lippa, A. S. Science 217, 408–416 (1982).
Fibiger, H. C. Brain Res. Rev. 4, 327–388 (1982).
Mesulam, M. M., Mufson, E. J., Wainer, B. H. & Levey, A. I. Neuroscience 10, 1185–1201 (1983).
Fisher, L. J. et al. J. Neumchem. 61, 1323–1332 (1993).
Connor, D. J., Langlais, P. J. & Thal, L. J. Brain Res. 555, 84–90 (1991).
Arendt, T. et al. Neuroscience 33, 435–462 (1989).
Boegman, R. J., Cockhill, J., Jhamandas, K. & Beninger, R. J. Neuroscience 51, 129–135 (1992).
Dunnett, S. B., Everitt, B. J. & Robbins, T. W. Trends Neurosci. 14, 494–501 (1991).
Girod, R. et al. J. Neurosci. (in the press).
Freed, W. J., Poltorak, M. & Becker, J. B. Expl. Neurol. 110, 139–166 (1990).
Gage, F. H. & Fisher, L. J. Neuron 6, 1–12 (1991).
Muir, J. L., Page, K. J., Sirinathsinghji, D. J. S., Robbins, T. W. & Everitt, B. J. Behav. Brain Res. 57, 123–131 (1993).
Grant, S. G. N. & Silva, A. J. Trends Neurosci. 17, 71–75 (1994).
Takahashi, J. S., Pinto, L. H. & Viaterna, M. H. Science 264, 1724–1733 (1994).
Bliss, T. V. P. & Collingridge, G. L. Nature 361, 31–39 (1993).
Paxinos, G. & Watson, C. The Rat Brain in Stereotaxic Coordinates (Academic, New York, 1986).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Winkler, J., Suhr, S., Gage, F. et al. Essential role of neocortical acetylcholine in spatial memory. Nature 375, 484–487 (1995). https://doi.org/10.1038/375484a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/375484a0
This article is cited by
-
A novel transgenic mouse model expressing primate-specific nuclear choline acetyltransferase: insights into potential cholinergic vulnerability
Scientific Reports (2023)
-
An optimized acetylcholine sensor for monitoring in vivo cholinergic activity
Nature Methods (2020)
-
Control of synaptic plasticity in deep cortical networks
Nature Reviews Neuroscience (2018)
-
Donepezil improves the cognitive impairment in a tree shrew model of Alzheimer’s disease induced by amyloid-β1–40 via activating the BDNF/TrkB signal pathway
Metabolic Brain Disease (2018)
-
Pharmacokinetics and dopamine/acetylcholine releasing effects of ginsenoside Re in hippocampus and mPFC of freely moving rats
Acta Pharmacologica Sinica (2013)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.