Quantum teleportation — the transmission and reconstruction over arbitrary distances of the state of a quantum system — is demonstrated experimentally. During teleportation, an initial photon which carries the polarization that is to be transferred and one of a pair of entangled photons are subjected to a measurement such that the second photon of the entangled pair acquires the polarization of the initial photon. This latter photon can be arbitrarily far away from the initial one. Quantum teleportation will be a critical ingredient for quantum computation networks.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Hertz-rate metropolitan quantum teleportation
Light: Science & Applications Open Access 10 May 2023
-
The efficiency of quantum teleportation with three-qubit entangled state in a noisy environment
Scientific Reports Open Access 07 March 2023
-
Long distance entanglement and high-dimensional quantum teleportation in the Fermi–Hubbard model
Scientific Reports Open Access 18 January 2023
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Bennett, C. H. et al. Teleporting an unknown quantum state via dual classic and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993).
Schrödinger, E. Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 23, 807–812; 823–828; 844–849 (1935).
Bennett, C. H. Quantum information and computation. Phys. Today 48(10), 24–30, (October1995).
Bennett, C. H., Brassard, G. & Ekert, A. K. Quantum Cryptography. Sci. Am. 267(4), 50–57, (October1992).
Mattle, K., Weinfurter, H., Kwiat, P. G. & Zeilinger, A. Dense coding in experimental quantum communication. Phys. Rev. Lett. 76, 4656–4659 (1996).
Kwiat, P. G. et al. New high intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995).
Hagley, E. et al. Generation of Einstein-Podolsky-Rosen pairs of atoms. Phys. Rev. Lett. 79, 1–5 (1997).
Schumacher, B. Quantum coding. Phys. Rev. A 51, 2738–2747 (1995).
Clauser, J. F. & Shimony, A. Bell's theorem: experimental tests and implications. Rep. Prog. Phys. 41, 1881–1927 (1978).
Greenberger, D. M., Horne, M. A. & Zeilinger, A. Multiparticle interferometry and the superposition principle. Phys. Today August, 22–29 (1993).
Tittel, W. et al. Experimental demonstration of quantum-correlations over more than 10 kilometers. Phys. Rev. Lett. (submitted).
Zukowski, M., Zeilinger, A., Horne, M. A. & Ekert, A. “Event-ready-detectors” Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287–4290 (1993).
Bose, S., Vedral, V. & Knight, P. L. Amultiparticle generalization of entanglement swapping.preprint.
Wootters, W. K. & Zurek, W. H. Asingle quantum cannot be cloned. Nature 299, 802–803 (1982).
Loudon, R. Coherence and Quantum Optics VI (eds Everly, J. H. & Mandel, L.) 703–708 (Plenum, New York, (1990)).
Zeilinger, A., Bernstein, H. J. & Horne, M. A. Information transfer with two-state two-particle quantum systems. J. Mod. Optics 41, 2375–2384 (1994).
Weinfurter, H. Experimental Bell-state analysis. Europhys. Lett. 25, 559–564 (1994).
Braunstein, S. L. & Mann, A. Measurement of the Bell operator and quantum teleportation. Phys. Rev. A 51, R1727–R1730 (1995).
Michler, M., Mattle, K., Weinfurter, H. & Zeilinger, A. Interferometric Bell-state analysis. Phys. Rev. A 53, R1209–R1212 (1996).
Zukowski, M., Zeilinger, A. & Weinfurter, H. Entangling photons radiated by independent pulsed sources. Ann. NY Acad. Sci. 755, 91–102 (1995).
Fry, E. S., Walther, T. & Li, S. Proposal for a loophole-free test of the Bell inequalities. Phys. Rev. A 52, 4381–4395 (1995).
Bennett, C. H. et al. Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996).
Greenberger, D. M., Horne, M. A., Shimony, A. & Zeilinger, A. Bell's theorem without inequalities. Am. J. Phys. 58, 1131–1143 (1990).
Zeilinger, A., Horne, M. A., Weinfurter, H. & Zukowski, M. Three particle entanglements from two entangled pairs. Phys. Rev. Lett. 78, 3031–3034 (1997).
Acknowledgements
We thank C. Bennett, I. Cirac, J. Rarity, W. Wootters and P. Zoller for discussions, and M. Zukowski for suggestions about various aspects of the experiments. This work was supported by the Austrian Science Foundation FWF, the Austrian Academy of Sciences, the TMR program of the European Union and the US NSF.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bouwmeester, D., Pan, JW., Mattle, K. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997). https://doi.org/10.1038/37539
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/37539
This article is cited by
-
Progress in quantum teleportation
Nature Reviews Physics (2023)
-
Applications of single photons to quantum communication and computing
Nature Reviews Physics (2023)
-
The efficiency of quantum teleportation with three-qubit entangled state in a noisy environment
Scientific Reports (2023)
-
Hertz-rate metropolitan quantum teleportation
Light: Science & Applications (2023)
-
Long distance entanglement and high-dimensional quantum teleportation in the Fermi–Hubbard model
Scientific Reports (2023)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.