Hybrid speciation accompanied by genomic reorganization in wild sunflowers

Article metrics


THE origin of a new diploid species via hybridization is theoretically difficult because it requires the development of reproductive isolation in sympatry. In the absence of isolation, the hybrid genotype will be overcome by gene flow with its parents. According to genetic models1-3, reproductive isolation can be facilitated by rapid karyotypic evolution in the recombinant hybrid. Here we use comparative linkage mapping4-5 to demonstrate extensive genomic reorganization in the hybrid species Helianthm anomalus, relative to its parents H. annuus and H. petiolaris. The unprecedented detail provided by the linkage maps indicates that rapid karyotypic evolution in H. anomalus results from the merger of pre-existing structural differences between the parents, as well as chromosomal rearrangements apparently induced by recombination. Moreover, determination of the parental origin of mapped loci in H. anomalus suggests that parental genomic structure has influenced hybrid genomic composition by protecting several large linkage blocks from recombination during speciation. These mapping data, when combined with previous meiotic analyses6 and evidence of semisterility between the hybrid and its parents6,7, satisfy genetic models for speciation through hybrid recombination.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Stebbins, G. L. Cytologia (Suppl. Vol.). 336–340 (1957).

  2. 2

    Grant, V. Cold Spring Harb. Symp. quant. Biol. 23, 337–363 (1958).

  3. 3

    Templeton, A. R. A. Rev. Ecol. Syst. 12, 23–48 (1981).

  4. 4

    Bonierbale, M. W., Plaisted, R. L. & Tanksley, S. D. Genetics 120, 1095–1103 (1988).

  5. 5

    Tanksley, S. D., Bernatsky, R., Lapitan, N. L. & Prince, J. P. Proc. natn. Acad. Sci., U.S.A. 85, 6419–6423 (1988).

  6. 6

    Chandler, J. M., Jan, C. & Beard, B. H. Syst. Bot. 11, 353–371 (1986).

  7. 7

    Heiser, C. B. Rhodora 60, 271–283 (1958).

  8. 8

    Heiser, C. B., Smith, D. M., Clevenger, S. & Martin, W. C. Mem. Torrey bot. Club 22, 1–218 (1969).

  9. 9

    Rieseberg, L. H., Beckstrom, S., Liston, A. & Arias, D. Syst. Bot. 16, 50–76 (1991).

  10. 10

    Rieseberg, L. H. Am. J. Bot. 78, 1218–1237 (1991).

  11. 11

    Heiser, C. B. Evolution 1, 249–262 (1947).

  12. 12

    Nabhan, G. P. & Reichhardt, K. L. SW. Nat. 28, 231–235 (1983).

  13. 13

    Crawford, D. J. Plant Molecular Systematics (Wiley, New York, 1990).

  14. 14

    Williams, J. K. G., Kubelic, A. R., Livak, K. J., Rafalski, J. A. & Tingey, S. V. Nucleic Acids Res. 18, 6531–6535 (1990).

  15. 15

    Rieseberg, L. H., Choi, H. C., Chan, R. & Spore, C. Heredity 70, 285–293 (1993).

  16. 16

    Lander, E. S. et al. Genomics 1, 174–181 (1987).

  17. 17

    Holm, D. G., Fitz-Earle, M. & Sharp, C. B. Theor. appl. Genet. 57, 247–256 (1980).

  18. 18

    Coyne, J. A. Evolution 28, 505–506 (1974).

  19. 19

    Rieseberg, L. H., Carter, R. & Zona, S. Evolution 44, 1498–1511 (1990).

  20. 20

    Goodfellow, P. N. Curr. Biol. 3, 149–151 (1993).

  21. 21

    Fritsch, P. & Rieseberg, L. H. Nature 359, 633–636 (1992).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rieseberg, L., Van Fossen, C. & Desrochers, A. Hybrid speciation accompanied by genomic reorganization in wild sunflowers. Nature 375, 313–316 (1995) doi:10.1038/375313a0

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.