Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging

Abstract

FUNCTIONAL magnetic resonance imaging (fMRI)1–3 was used to measure local haemodynamic changes (reflecting electrical activity) in human visual cortex during production of the visual motion aftereffect, also known as the waterfall illusion4,5. As in previous studies6–9, human cortical area MT (V5) responded much better to moving than to stationary visual stimuli. Here we demonstrate a clear increase in activity in MT when subjects viewed a stationary stimulus undergoing illusory motion, following adaptation to stimuli moving in a single local direction. Control stimuli moving in reversing, opposed directions produced neither a perceptual motion aftereffect nor elevated fMRI levels postadaptation. The time course of the motion aftereffect (measured in parallel psychophysical tests) was essentially identical to the time course of the fMRI motion aftereffect. Because the motion aftereffect is direction specific, this indicates that cells in human area MT are also direction specific. In five other retinotopically defined cortical areas, similar motion-specific aftereffects were smaller than those in MT or absent.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kwong, K. K. et al. Proc. natn. Acad. Sci. U.S.A. 89, 5675–5679 (1992).

    Article  ADS  CAS  Google Scholar 

  2. Ogawa, S. et al. Proc. natn. Acad. Sci. U.S.A. 89, 5951–5955 (1992).

    Article  ADS  CAS  Google Scholar 

  3. Bandettini, P. A., Wong, E. C., Hinks, R. S., Tikofsky, R. S. & Hyde, J. S. Magn. Reson. Med. 25, 390–397 (1992).

    Article  CAS  Google Scholar 

  4. Adams, R. Phil. Mag. 5, 373–374 (1834).

    Google Scholar 

  5. Wohlgemuth, A. Br. J. Psychol. (Suppl.) 1, 1–117 (1911).

    Google Scholar 

  6. Zeki, S. et al. J. Neurosci. 11, 641–649 (1991).

    Article  CAS  Google Scholar 

  7. Watson, J. D. G. et al. Cerebr. Cort. 3, 79–94 (1993).

    Article  CAS  Google Scholar 

  8. Dupont, P., Orban, G. A., DeBruyn, B., Verbruggen, A. & Mortelmans, L. J. Neurophysiol. 72, 1420–1424 (1994).

    Article  CAS  Google Scholar 

  9. Tootell, R. B. H. et al. J. Neurosci. 15, 3215–3230 (1995).

    Article  CAS  Google Scholar 

  10. Clarke, S. & Miklossy, J. J. comp. Neurol. 298, 188–214 (1990).

    Article  CAS  Google Scholar 

  11. Tootell, R. B. H. & Taylor, J. B. Cerebr. Cort. 5, 39–55 (1995).

    Article  CAS  Google Scholar 

  12. Petersen, S. E., Baker, J. F. & Allman, J. M. Brain Res. 346, 146–150 (1985).

    Article  CAS  Google Scholar 

  13. Barlow, H. B. & Hill, R. M. Nature 200, 1345–1347 (1963).

    Article  ADS  CAS  Google Scholar 

  14. Hammond, P., Mouat, G. S. V. & Smith, A. T. Expl Brain Res. 60, 411–416 (1985).

    Article  CAS  Google Scholar 

  15. Marlin, S. G., Sohail, S. J., Hasan, J. & Cynader, M. S. J. Neurophysiol. 59, 1314–1330 (1988).

    Article  CAS  Google Scholar 

  16. Movshon, J. A. & Lennie, P. Nature 278, 850–852 (1979).

    Article  ADS  CAS  Google Scholar 

  17. Vautin, R. G. & Berkeley, M. A. J. Neurophysiol. 40, 1051–1065 (1977).

    Article  CAS  Google Scholar 

  18. Von der Heydt, R., Hanny, P. & Adorjani, C. Archs ital. Biol. 116, 248–254 (1978).

    CAS  Google Scholar 

  19. Carney, T. & Shadlen, M. N. Vision Res. 33, 1977–1995 (1993).

    Article  CAS  Google Scholar 

  20. Schneider, W., Noll, D. C. & Cohen, J. D. Nature 365, 150–153 (1993).

    Article  ADS  CAS  Google Scholar 

  21. DeYoe, E. A. et al. J. Neurosci. Meth. 54, 171–187 (1995).

    Article  Google Scholar 

  22. Sereno, M. I. et al. Science (in the press).

  23. Felleman, D. J. & Van Essen, D. C. Cerebr. Cort. 1, 1–47 (1991).

    Article  CAS  Google Scholar 

  24. Nishida, S., Ashida, H. & Sato, T. Vision Res. 34, 2707–2716 (1994).

    Article  CAS  Google Scholar 

  25. Nishida, S. & Sato, T. Vision Res. 32, 1635–1646 (1992).

    Article  CAS  Google Scholar 

  26. Zeki, S., Watson, J. D. & Frackowiak, R. S. Proc. R. Soc. B252, 215–222 (1993).

    Article  ADS  CAS  Google Scholar 

  27. Friston, K. J., Jezzard, P. & Turner, R. Hum. Brain Mapping 1, 153–171 (1994).

    Article  Google Scholar 

  28. Born, R. T. & Tootell, R. B. H. Nature 357, 497–499 (1992).

    Article  ADS  CAS  Google Scholar 

  29. Allman, J. M., Baker, J. F., Newsome, W. T. & Petersen, S. E. in Cortical Sensory Organization Vol. 2. Multiple Visual Areas (ed. Woolsey, C. N.) 171–185 (Humana, Clifton, NJ, 1981).

    Google Scholar 

  30. Lagae, L., Gulyas, B., Raiguel, S. & Orban, G. A. Brain Res. 496, 361–367 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tootell, R., Reppas, J., Dale, A. et al. Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging. Nature 375, 139–141 (1995). https://doi.org/10.1038/375139a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/375139a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing