Allosteric transition intermediates modelled by crosslinked haemoglobins

Article metrics

Abstract

THE structural end-points of haemoglobin's transition from its low-oxygen-affinity (T) to high-oxygen-affinity (R) state, have been well established by X-ray crystallography1á€-7, but short-lived intermediates have proved less amenable to X-ray studies. Here we use chemical crosslinking to fix these intermediates for structural characterization. We describe the X-ray structures of three haemoglobins, α2β1S82β, α2β1Tm82β and α2β1,82Tm82β, which were crosslinked between the amino groups of residues βVal1 and βLys82 by 3,3′-stilbenedicarboxylic acid (S) or trimesic acid (Tm) while in the deoxy state, and saturated with carbon monoxide before crystallization. α2β1S82β, which has almost normal oxygen affinity, is completely in the R-state conformation; however, α2β1Tm82β and α2β1,82Tm82β, both of which have low oxygen affinity, have been prevented from completing their transition into the R state and display many features of a transitional intermediate. These haemoglobins therefore represent a snapshot of the nascent R state.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Baldwin, J. & Chothia, C. J. molec. Biol. 129, 175–220 (1979).

  2. 2

    Fermi, G., Perutz, M., Shaanan, B. & Fourme, R. J. molec. Biol. 175, 159–174 (1984).

  3. 3

    Shaanan, B. J. molec. Biol. 171, 31–59 (1983).

  4. 4

    Perutz, M. F. Nature 228, 726–739 (1970).

  5. 5

    Dickerson, R. E. & Geis, I. Hemoglobin: Structure, Function, Evolution, and Pathology 3–63 (Benjamin/Cummings, Menlo Park, California, 1983).

  6. 6

    Perutz, M. F. A. Rev. Physiol. 52, 1–25 (1990).

  7. 7

    Derewenda, Z. et al. J. molec. Biol. 211, 515–519 (1990).

  8. 8

    Jones, R. T. et al. Biochemistry 32, 215–223 (1993).

  9. 9

    Kluger, R. et al. Biochemistry 31, 7551–7559 (1992).

  10. 10

    Perutz, M. J. Crystal Growth 2, 54–56 (1968).

  11. 11

    Tronrud, D. E., Ten Eyck, L. F. & Matthews, B. W. Acta crystallogr. A43, 489–501 (1987).

  12. 12

    Fitzgerald, P. M. D. J. appl. Crystallogr. 21, 273–278 (1988).

  13. 13

    Silva, M. M., Rogers, P. H. & Arnone, A. J. biol. Chem. 267, 17248–17256 (1992).

  14. 14

    Smith, F. R., Lattman, E. E. & Carter, C. W. Jr Prot. Struct. Funct. Genet. 10, 81–91 (1991).

  15. 15

    Smith, F. R. & Simmons, K. C. Prot. Struct. Funct. Genet. 18, 295–300 (1994).

  16. 16

    Rodgers, K. R. & Spiro, T. G. Science 265, 1697–1699 (1994).

  17. 17

    Liddington, R., Derewenda, Z., Dodson, G. & Harris, D. Nature 331, 725–728 (1988).

  18. 18

    Liddington, R., Derewenda, Z., Dodson, E., Hubbard, R. & Dodson, G. J. molec. Biol. 228, 551–579 (1992).

  19. 19

    Perutz, M. F. et al. J. molec. Biol. 138, 649–670 (1980).

  20. 20

    Martin de Llano, J. J. et al. J. biol. Chem. 268, 27004–27011 (1993).

  21. 21

    Franzen, S., Lambry, J. C., Bohn, B., Poyart, C. & Martin, J. L. Nature struct. Biol. 1, 230–233 (1994).

  22. 22

    Mukerji, I. & Spiro, T. G. Biochemistry 33, 13132–13139 (1994).

  23. 23

    Anfinrud, P. A., Han, C. & Hochstrasser, R. M. Proc. natn. Acad. Sci. U.S.A. 86, 8387–8391 (1989).

  24. 24

    Lim, M., Jackson, T. A. & Anfinrud, P. A. Proc. natn. Acad. Sci. U.S.A. 90, 5801–5804 (1993).

  25. 25

    Jones, T. A. J. appl. Crystallogr. 11, 268–272 (1978).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schumacher, M., Dixon, M., Kluger, R. et al. Allosteric transition intermediates modelled by crosslinked haemoglobins. Nature 375, 84–87 (1995) doi:10.1038/375084a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.