Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Homeotic genes and the regulation and evolution of insect wing number

Abstract

THE evolution of wings catalysed the radiation of insects which make up some 75 per cent of known animals. Fossil evidence suggests that wings evolved from a segment of the leg1 and that early pterygotes bore wings on all thoracic and abdominal segments2. The pterygote body plan subsequently diverged producing orders bearing three, two or just one pair of thoracic wings. We have investigated the role of homeotic genes in pterygote evolution by examining their function in Drosophila wing development and their expression in a primitive apterygote. Wing formation is not promoted by any homeotic gene, but is repressed in different segments by different homeotic genes. We suggest here that wings first arose without any homeotic gene involvement in an ancestor with a homeotic 'groundplan' similar to modern winged insects and that wing formation subsequently fell under the negative control of individual homeotic genes at different stages of pterygote evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kukalova-Peck, J. Can. J. Zool. 61, 1618–1669 (1983).

    Article  Google Scholar 

  2. Kukalova-Peck, J. J. Morph. 156, 53–126 (1978).

    Article  Google Scholar 

  3. Alberga, A., Boulay, J.-L., Kempe, E., Dennefeld, C. & Haenlin, M. Development 111, 983–992 (1991).

    CAS  PubMed  Google Scholar 

  4. Williams, J. A., Bell, J. & Carroll, S. B. Genes Dev. 5, 2481–2495 (1991).

    Article  CAS  Google Scholar 

  5. Simpson, P. Genetics 105, 615–632 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Levine, M., Hafen, E., Garber, R. L. & Gehring, W. J. EMBO J. 2, 2037–2046 (1983).

    Article  CAS  Google Scholar 

  7. Carroll, S. B., Laymon, R. A., McCutcheon, M. A., Riley, P. D. & Scott, M. P. Cell 47, 113–122 (1986).

    Article  CAS  Google Scholar 

  8. Riley, P. D., Carroll, S. B. & Scott, M. P. Genes Dev. 1, 716–730 (1987).

    Article  CAS  Google Scholar 

  9. Mahaffey, J. W. & Kaufman, T. C. Genetics 117, 51–60 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. White, R. A. H. & Wilcox, M. EMBO J. 4, 2035–2043 (1985).

    Article  CAS  Google Scholar 

  11. Bate, M. & Martinez-Arias, A. Development 112, 755–761 (1991).

    CAS  PubMed  Google Scholar 

  12. Castelli-Gair, J., Greig, S., Micklem, G. & Akam, M. Development 120, 1983–1995 (1994).

    CAS  PubMed  Google Scholar 

  13. Struhl, G. Proc. natn. Acad. Sci. U.S.A. 78, 7380–7384 (1982).

    Article  ADS  Google Scholar 

  14. Brand, A. H. & Perrimon, N. Development 118, 401–415 (1993).

    CAS  PubMed  Google Scholar 

  15. Wootton, R. J. Paleontology 15, 662–675 (1972).

    Google Scholar 

  16. Kukalova Peck, J. in The Insects of Australia 2nd edn Vol. 1 141–179 (Cornell Univ. Press, Ithaca, N.Y., 1991).

    Google Scholar 

  17. Averof, M. & Akam, M. Curr. Biol. 3, 73–78 (1993).

    Article  CAS  Google Scholar 

  18. Kelsh, R., Weinzierl, R. O., White, R. A. & Akam, M. Devl Genet. 15, 19–31 (1994).

    Article  CAS  Google Scholar 

  19. Cohen, B., Wimmer, E. & Cohen, S. M. Mech. Dev. 33, 229–240 (1991).

    Article  CAS  Google Scholar 

  20. Vachon, G. et al. Cell 71, 437–450 (1992).

    Article  CAS  Google Scholar 

  21. Mann, R. S. Development 121, 3205–3212 (1994).

    Google Scholar 

  22. Snodgrass, R. Principles of Insect Morphology (McGraw-Hill, New York, 1935).

    Google Scholar 

  23. Lewis, E. B. Nature 276, 565–570 (1978).

    Article  ADS  CAS  Google Scholar 

  24. Raff, R. & Kaufman, T. Embryos, Genes and Evolution (Indiana Univ. Press, Bloomington, 1983).

    Google Scholar 

  25. Akam, M., Dawson, I. & Tear, G. Development 104, 123–133 (1988).

    Google Scholar 

  26. Mauhin, V., Lutz, Y., Dennefeld, C. & Alberga, A. Nucleic Acids Res. 21, 3951–3957 (1993).

    Article  CAS  Google Scholar 

  27. Condie, J. M., Mustard, J. A. & Brower, D. L. Drosophila Information Service 70, 52–54 (1991).

    Google Scholar 

  28. Williams, J. A., Paddock, S. W., Vorwerk, K. & Carroll, S. B. Nature 368, 298–305 (1994).

    Article  ADS  Google Scholar 

  29. Andrew, D. J., Horner, M. A., Petitt, M. G., Smolik, S. M. & Scott, M. P. EMBO J. 13, 1132–1144 (1994).

    Article  CAS  Google Scholar 

  30. Hinz, U., Biebel, B. & Campos-Ortega, J. A. Cell 76, 77–87 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carroll, S., Weatherbee, S. & Langeland, J. Homeotic genes and the regulation and evolution of insect wing number. Nature 375, 58–61 (1995). https://doi.org/10.1038/375058a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/375058a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing