Prediction of ligand-promoted dissolution rates from the reactivities of aqueous complexes

Article metrics


EARTH scientists have long recognized1á€-4 that the soluble organic acids excreted by soil biota enhance rates of mineral weathering, thereby chemically stratifying the soil and affecting the biodegradation pathways of organic matter, including pollutants5. Multidentate organic ligands6,7 also exist in industrial waste waters8 and can enhance the mobility of heavy elements, including radionuclides9. Here we examine whether rate coefficients for ligand-promoted disolution of minerals can be predicted from existing studies of dissolved metal complexes. We have performed dissolution experiments on bunsenite (NiO) to compare with published studies of ligand exchange around dissolved Ni(II)á€-ligand complexes10á€-12. The hypothesis is confirmed with surprising detail: the dissolution rate coefficient increases with the number of ligand functional groups coordinated to the surface metal, as do the exchange rate coefficients10á€-12. Furthermore, we find that the dissolution rate coefficients can be predicted from the equilibrium constants for metal complexation in solution, indicating that the activated surface complexes resemble the corresponding dissolved complexes in important ways.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Hilgard, E. W. Soils: their Formation, Properties, Compositions and Relations to Climate and Plant Growth in the Humid and Arid Regions 19 (Macmillan, New York, 1914).

  2. 2

    Bloomfield, C. J. Soil Sci. 4, 17–23 (1953).

  3. 3

    Powell, P. E., Cline, G. R., Reid, C. P. P. & Szanislo, P. J. Nature 287, 833–834 (1980).

  4. 4

    Huang, W. H. & Keller, W. D. Nature 239, 149–151 (1972).

  5. 5

    Lovley, D. R., Woodward, J. C. & Chapelle, F. H. Nature 370, 128–130 (1994).

  6. 6

    Muir, J. W., Morrison, R. I., Brown, C. J. & Logan, J. J. Soil Sci. 15, 220–225 (1964).

  7. 7

    Drever, J. I. & Vance, G. F. in Organic Acids in Geological Processes (eds Pittman, E. D. & Lewan, M. D.) 138–161 (Springer, New York, 1993).

  8. 8

    Francis, A. J. Experientia 46, 840–850 (1990).

  9. 9

    Means, J. L., Crerar, D. A. & Duguid, J. O. Science 200, 1477–1480 (1978).

  10. 10

    Wilkens, R. G. Kinetics and Mechanism of Reactions of Transition Metal Complexes, (VCH, New York, 1991).

  11. 11

    Rowland, T. V. thesis, University of California at Berkeley (1975).

  12. 12

    Margerum, D. W., Cayley, G. R., Weatherburn, D. C. & Pagenkopf, D. K. Kinetics and Mechanisms of Complex Formation and Ligand Exchange. Ch. 1 (ACS Monogr. 174, Am. Chem. Soc. Washington DC, 1978).

  13. 13

    Furrer, G. & Stumm, W. Geochim. cosmochim. Acta 50, 1847–1860 (1986).

  14. 14

    Pohlman, A. A. & McColl, J. C. J. envir. Qual. 14, 86–92 (1986).

  15. 15

    Burgess, J. Metal Ions in Solution 333 (Ellis-Horwood, Chichester, 1990).

  16. 16

    Martell, A. E. & Smith, R. M. Critical Stability Constants Vols 1–6 (Plenum, New York 1975–89).

  17. 17

    Westrich, H. R., Cygan, R. T., Casey, W. H., Zemitis, C. & Arnold, G. W. Am. J. Sci. 293, 869–893 (1993).

  18. 18

    Kummert, R. & Stumm, W. J. Colloid Interface Sci. 75, 373–385 (1980).

  19. 19

    Casey, W. H. & Westrich, H. R. Nature 355, 157–159 (1992).

  20. 20

    Oreskes, N., Shrader-Frechette, K. & Belitz, K. Science 263, 641–646 (1994).

  21. 21

    Sverjensky, D. Nature 358, 310–313 (1992).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ludwig, C., Casey, W. & Rock, P. Prediction of ligand-promoted dissolution rates from the reactivities of aqueous complexes. Nature 375, 44–47 (1995) doi:10.1038/375044a0

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.