Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Targeted disruption of the tyrosine hydroxylase gene reveals that catecholamines are required for mouse fetal development

Abstract

TYROSINE hydroxylase catalyses the initial, rate-limiting step in the catecholamine biosynthetic pathway. Catecholamines, which include dopamine, noradrenaline, and adrenaline, are important neurotransmitters and hormones that regulate visceral functions, motor coordination and arousal in adults1. The gene encoding tyro-sine hydroxylase becomes transcriptionally active in developing neuroblasts during mid-gestation of rodent embryos, before the onset of neurotransmission2–6. Here we show that inactivation of both tyrosine hydroxylase alleles results in mid-gestational lethality: about 90% of mutant embryos die between embryonic days 11.5 and 15.5, apparently of cardiovascular failure. Administration of L-DOPA (dihydroxyphenylalanine), the product of the tyrosine hydroxylase reaction, to pregnant females results in complete rescue of mutant mice in utero. Without further treatment, however, they die before weaning. We conclude that catecholamines are essential for mouse fetal development and postnatal survival

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cooper, J. R., Bloom, F. E. & Roth, R. H. The Biochemical Basis of Neuropharmacology 221–337 (Oxford Univ. Press, New York, 1991).

    Google Scholar 

  2. Cochard, P. Goldstein, M. & Black, I. B. Proc. natn. Acad. Sci. U. S. A. 75, 1986–2990 (1978).

    Article  Google Scholar 

  3. Teitelman, G., Baker, H., Joh, T. H. & Reis, D. J. Proc. natn. Acad. Sci. U. S. A. 76, 509–513 (1979).

    Article  ADS  CAS  Google Scholar 

  4. Jonakait, G. M., Rosenthal, M. & Morrell, J. I. J. histochem. Cytochem. 37, 1–5 (1989).

    Article  CAS  Google Scholar 

  5. Teitelman, G., Gorshon, M. D., Rothman, R. P., Joh, T. H. & Reis, D. J. Devl Biol. 86, 348–355 (1981).

    Article  CAS  Google Scholar 

  6. Specht, L. A., Pickel, V. M., Joh, T. H. & Reis, D. J. J. comp. Neurol. 199, 233–253 (1981).

    Article  CAS  Google Scholar 

  7. Mansour, S. I., Thomas, K. R. & Capecchi, M. R. Nature 336, 348–352 (1988).

    Article  ADS  CAS  Google Scholar 

  8. O'Mallery, K. L. & Rotmein, P. Nucleic Acids Res. 16, 4437–4446 (1988).

    Google Scholar 

  9. Bartolomei, M. S., Zemel, S. & Tilghman, S. M. Nature 351, 153–155 (1991).

    Article  ADS  CAS  Google Scholar 

  10. DeChiara, T. M., Efstratiadis, A. & Robertson, E. J. Nature 345, 78–80 (1990).

    Article  ADS  CAS  Google Scholar 

  11. Thomas, S. A., Mutsumoto, A. M. & Palmiter, R. D. Nature 374, 643–646 (1995).

    Article  ADS  CAS  Google Scholar 

  12. Kato, T., Karai, N., Katsuyama, M., Nakamura, M. & Katsube, J. Biochem. Pharmac. 36, 3051–3057 (1987).

    Article  CAS  Google Scholar 

  13. Hall, A. K. & Landis, S. C. J. Neurosci. 11, 472–484 (1991).

    Article  CAS  Google Scholar 

  14. Gershon, M. D., Rothman, t. P., Joh, T. H. & Teitelman, G. N. J. Neurosci. 4, 2269–2280 (1984).

    Article  CAS  Google Scholar 

  15. Rubin, E. J. Neurosci. 5, 673–684 (1985).

    Article  CAS  Google Scholar 

  16. Guillemot, F. et al. Cell 75, 463–476 (1993).

    Article  CAS  Google Scholar 

  17. Tybulwicz, V. L. J., Crawford, C. E., Jackson, P. K., Bronson, R. T. & Mulligan, R. C. Cell 65, 1153–1163 (1991).

    Article  Google Scholar 

  18. Soriano, P., Montegomery, C., Geske, R. & Bradley, A. Cell 64, 693–702 (1991).

    Article  CAS  Google Scholar 

  19. Iwata, K. et al. Biochem. biophys. Res. Commun. 182, 348–352 (1992).

    Article  CAS  Google Scholar 

  20. Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning: A Laboratory Manual (Cold Spring Harbour Laboratory Press, New York, 1989).

    Google Scholar 

  21. De La Torre, J. C. J. Neurosci. Res. 3, 1–5 (1980).

    CAS  Google Scholar 

  22. Kaufman, M. H. The Atlas of Mouse Development (Academic, San Diego, 1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, QY., Quaife, C. & Palmiter, R. Targeted disruption of the tyrosine hydroxylase gene reveals that catecholamines are required for mouse fetal development. Nature 374, 640–643 (1995). https://doi.org/10.1038/374640a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/374640a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing