Observational confirmation of a circumsolar dust ring by the COBE satellite

Article metrics


ASTEROID collisions are an important source of the dust particles in the zodiacal cloud1–3. These particles spiral in towards the Sun under the influence of drag forces4–6 and, in passing through the inner Solar System, are subject to gravitational perturbations by the planets, which may trap them (at least temporarily) in orbital resonances7–10. Recently, numerical simulations have shown that resonances with the Earth are particularly effective at trapping asteroidal dust, leading to the suggestion that the Earth may be embedded in a circumsolar ring of dust11. The azimuthal structure of this ring was predicted to be asymmetric, with the region trailing the Earth being substantially more dense than that in the leading direction11. This prediction is in both qualitative and quantitative agreement with the asymmetry in zodiacal light observed by the Infrared Astronomical Satellite (IRAS)11,12, but the IRAS data alone are equivocal because of calibration uncertainties and sparse coverage of elongation angle12. Here we report observations by the Diffuse Infrared Background Experiment13 (DIRBE) on the Cosmic Background Explorer satellite (COBE)14, which confirm both the existence of this ring and the predictions of its near-Earth structure.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Low, F. J. et al. Astrophys. J. 278, L19–L22 (1984).

  2. 2

    Dermott, S. F., Nicholson, P. D., Burns, J. A. & Houck, J. R. Nature 312, 505–509 (1984).

  3. 3

    Sykes, M. V. Icarus 84, 267–289 (1990).

  4. 4

    Wyatt, S. P. & Whipple, F. L. Astrophys. J. 111, 134–141 (1950).

  5. 5

    Burns, J. A., Lamy, P. L. & Soter, S. Icarus 40, 1–48 (1979).

  6. 6

    Reach, W. T. Astrophys. J. 392, 289–299 (1992).

  7. 7

    Jackson, A. A. & Zook, H. A. Nature 337, 629–631 (1989).

  8. 8

    Jackson, A. A. & Zook, H. A. Icarus 97, 70–84 (1992).

  9. 9

    Sicardy, B., Beaugé, C., Ferraz-Mello, S., Lazzaro, D. & Roques, F. Celestial Mech. dynamical Astr. 57, 373–390 (1993).

  10. 10

    Weidenschilling, S. J. & Jackson, A. A. Icarus 104, 244–254 (1993).

  11. 11

    Dermott, S. F., Jayraraman, S., Xu, Y. L., Gustafson, B. Å. S. & Liou, J. C. Nature 369, 719–723 (1994).

  12. 12

    Reach, W. T. Astrophys. J. 369, 529–543 (1991).

  13. 13

    Hauser, M. G. in Back to the Galaxy (eds Holt, S. & Verter, F.) 201–205 (Am. Inst Phys, New York, 1993).

  14. 14

    Boggess, N. W. et al. Astrophys. J. 397, 420–429 (1992).

  15. 15

    Reach, W. T. Astrophys. J. 335, 468–485 (1988).

  16. 16

    Spiesman, W. J. et al. Astrophys. (in the press).

  17. 17

    Leinert, C. Space Sci. Rev. 18, 281–339 (1975).

  18. 18

    Giese, R. H., Kneissel, B. & Rittich, U. Icarus 68, 395–411 (1986).

  19. 19

    Good, J. C., Gautier, T. N. & Hauser, M. G. Adv. Space Res. 6, 84–86 (1986).

  20. 20

    Hong, S. S. Astr. Astrophys. 148, 67–75 (1985).

  21. 21

    Grün, E., Zook, H. A., Fechtig, H. & Giese, R. H. Icarus 62, 244–272 (1985).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.