Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Different phenotypes for mice deficient in either activins or activin receptor type II


ACTIVINS are believed to initiate a signal transduction cascade by binding to serine/threonine kinase receptors types I and II1–3. Activins4 bind to several different receptors in vitro1–3, but the significance of this interaction in vivo has not been confirmed. To test the function of the type II activin receptor (ActRcII) in mammalian development and reproduction, we generated a null mutation in the ActRcII gene in mice using embryonic stem cell technology. We expected ActRcII-deficient mice to phenocopy activin-deficient mice. A few ActRcII-deficient mice had skeletal and facial abnormalities reminiscent of the Pierre–Robin syndrome in humans5,6, but most lacked these defects and developed into adults; their follicle-stimulating hormone was suppressed, and their reproductive performance was defective. These findings confirm a role of ActRcII in activin signalling in pituitary gonadotrophs. The striking lack of overlap between phenotypes of ActRcII-deficient and activin-deficient mice suggests that the ligands that signal through ActRcII during embryonic development are not activins.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout


  1. Mathews, L. S. Endocr. Rev. 15, 310–325 (1994).

    Article  CAS  Google Scholar 

  2. ten Dijke, P. et al. Science 264, 101–104 (1994).

    Article  ADS  CAS  Google Scholar 

  3. Carcamo, J. et al. Molec. cell. Biol. 14, 3810–3821 (1994).

    Article  CAS  Google Scholar 

  4. Vale, W., Hsueh, A., Rivier, C. & Yu, J. in Peptide Growth Factors and their Receptors II (eds Sporn, M. B. & Roberts, A. B.) 211–248 (Springer, Berlin, 1990).

    Book  Google Scholar 

  5. Caouette-Laberge, L., Bayet, B. & Larocque, Y. Plastic Reconst. Surg. 93, 934–1042 (1994).

    Article  CAS  Google Scholar 

  6. Clarke, L., Hepworth, W. B., Carey, J. C. & Seegmiller, R. E. Teratology 38, 565–570 (1988).

    Article  CAS  Google Scholar 

  7. Feijen, A., Goumans, M. J. & van den Eijnden-Van Raaij, A. J. M. Development 120, 3621–3637 (1994).

    CAS  Google Scholar 

  8. Matzuk, M. M. et al. Nature 374, 354–356 (1995).

    Article  ADS  CAS  Google Scholar 

  9. Roberts, V. J. & Barth, S. Endocrinology 134, 914–923 (1994).

    Article  CAS  Google Scholar 

  10. Woodruff, T. K., Lyon, R. J., Hansen, S. E., Rice, G. C. & Mather, J. P. Endocrinology 127, 3196–3205 (1990).

    Article  CAS  Google Scholar 

  11. Mather, J. P. et al. Endocrinology 127, 3206–3214 (1990).

    Article  CAS  Google Scholar 

  12. Kaipia, A., Toppari, J., Huhtaniemi, I. & Pranko, J. Endocrinology 134, 2165–2170 (1994).

    Article  CAS  Google Scholar 

  13. Shikone, T. et al. Molec. Endocr. 8, 983–995 (1994).

    CAS  PubMed  Google Scholar 

  14. deWinter, J. P. et al. Molec. Cell Endocr. 83, R1–R8 (1992).

    Article  CAS  Google Scholar 

  15. Feng, Z.-M., Madigan, M. B. & Chen, C.-L. C. Endocrinology 132, 2593–2600 (1993).

    Article  CAS  Google Scholar 

  16. Cameron, V. A. et al. Endocrinology 134, 799–808 (1994).

    Article  CAS  Google Scholar 

  17. Ritzen, E. M., Hansson, V. & French, F. S. in The Testis 2nd edn (eds Burger, H. & de Kretser, D.) 269–302 (Raven, New York; 1989).

  18. Vassali, A. et al. Genes Dev. 8, 414–427 (1994).

    Article  Google Scholar 

  19. Hemmati-Brivanlou, A. & Melton, D. A. Nature 359, 609–614 (1992).

    Article  ADS  CAS  Google Scholar 

  20. Hemmati-Brivanlou, A. & Melton, D. A. Cell 77, 273–281 (1994).

    Article  CAS  Google Scholar 

  21. Schulte-Merker, S., Smith, J. C. & Dale, L. EMBO J. 13, 3533–3541 (1994).

    Article  CAS  Google Scholar 

  22. Matzuk, M. M. & Bradley, A. Biochem. biophys. Res. Commun. 185, 404–413 (1992).

    Article  CAS  Google Scholar 

  23. Matzuk, M. M., Finegold, M. J., Su, J.-G. J., Hsueh, A. J. W. & Bradley, A. Nature 360, 313–319 (1992).

    Article  ADS  CAS  Google Scholar 

  24. Mathews, L. S. & Vale, W. W. Cell 65, 973–982 (1991).

    Article  CAS  Google Scholar 

  25. Bradley, A. in Teratocarcinomas and Embryonic Stem Cells: A Practical Approach (ed. Robinson, E. J.) 113–151 (IRL, Oxford, 1987).

    Google Scholar 

  26. Ramirez-Solis, R. et al. Analyt. Biochem. 201, 331–335 (1992).

    Article  CAS  Google Scholar 

  27. Ramirez-Solis, R. et al. Cell 83, 279–294 (1993).

    Article  Google Scholar 

  28. Kumar, T. R., Fairchild-Huntress, V. & Low, M. Molec. Endocr. 6, 81–90 (1992).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Matzuk, M., Kumar, T. & Bradley, A. Different phenotypes for mice deficient in either activins or activin receptor type II. Nature 374, 356–360 (1995).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing