Abstract
DENITRIFICATION—the process by which nitrate is reduced to gaseous nitrogen species (usually N2 or N2O)—is the dominant mechanism for removal of fixed nitrogen from the biosphere. In the oceans, denitrification is mediated by bacteria in suboxic environments and, by controlling the supply of fixed nitrogen, is an important limiting factor for marine productivity1–3. Denitrification produces substantial 15N enrichment in subsurface nitrate4–6, which is reflected in the isotopic composition of sinking particulate nitrogen7; sediment 15N/14N ratios in regions with suboxic water columns may therefore provide a record of past changes in denitrification intensity. Here we report nitrogen isotope data for sediment cores from three sites in the Arabian Sea. At all three sites we find large, near-synchronous downcore variations in 15N/14N, which are best explained by regional changes in the isotopic composition of subsurface nitrate, and hence denitrification. Moreover, these variations are synchronous with Milankovitch cycles, thereby establishing a link with climate. We argue that these large, climate-linked variations, in a region that contributes significantly to global marine denitrification, are likely to have perturbed marine biogeo-chemical cycles during the Late Quaternary period.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Two-step closure of the Miocene Indian Ocean Gateway to the Mediterranean
Scientific Reports Open Access 20 June 2019
-
Orbital-scale denitrification changes in the Eastern Arabian Sea during the last 800 kyrs
Scientific Reports Open Access 04 May 2018
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout
References
Codispoti. L. & Christensen, J. P. Mar. Chem. 16, 277–300 (1985).
Devol. A. H. Nature 349, 319–321 (1991).
Altabet, M. A. & Curry. W. B. Globl biogeochem. Cycles 3, 107–119 (1989).
Miyake, Y. & Wada, E. Rec. oceanog. Works Japan 11, 1–6 (1971).
Cline, J. D. & Kaplan, I. R. Mar. Chem. 3, 271–299 (1975).
Liu. K.-K. & Kaplan, I. R. Limnol. Oceanogr. 34, 820–830 (1989).
Schafer, P. & Ittekkot, V. Naturwissenshaften 80, 511–513 (1993).
Altabet, M. A. Deep-Sea Res. 35, 535–554 (1988).
Altabet, M. A. & Francois, R. in Carbon Cycling in the Glacial Ocean: Constraints on the Ocean's Role in Global Change (eds Zahn, R., Kaminski, M, Labeyrie, L. & Pederson, T. F.) 281–306 (Springer, Berlin, 1994).
Altabet, M. A. & Francois, R. Globl biogeochem. Cycles 8, 103–116 (1994).
Libes, S. M. & Deuser, W. G. Deep-Sea Res. 35, 517–533 (1988).
Nair, R. R. et al. Nature 338, 749–751 (1989).
Hacke, B. et al. Deep-Sea Res. 40, 1323–1344 (1993).
Wyrtki, K. Oceanographic Atlas of the International Indian Ocean Expedition (National Science Foundation, Washington DC, 1971).
Imbrie, J. et al. in Milankovitch and Climate Part 1 (eds Berger, A. L, Imbrie, J., Hays, J., Kukla, G. & Saltzman, B.) 269–305 (Reidel, Hingham, 1984).
Clemens, S., Prell, W., Murray, D., Shimmield, G. & Weedon, G. Nature 353, 720–725 (1991).
Prell, W. L. in Milankovitch and Climate Part 1 (eds Berger, A. L, Imbrie, J., Hays, J., Kukla, G. & Saltzman, B.) 349–366 (Reidel, Hingham, 1984).
Prell, W. L. in Climate Processes and Climate Sensitivity (eds Hansen, J. & Takahashi, T.) 48–57 (Am. Geophys. Union, Washington DC, 1984).
Prell, W. L., Murray, D. W., Clemens, S. C. & Anderson, D. M. in Synthesis of Results from Scientific Drilling in the Indian Ocean (eds Duncan, R. A., Rea, D. K., Kidd, R. B., Rad, U. V. & Weissel, J. K.) 447–469 (Am. Geophys. Union, Washington, DC, 1992).
Anderson, D. M. & Prell, W. L. Paleoceanography 8, 193–208 (1993).
Olson, D. B., Hitchcock, G. L., Fine, R. A. & Warren, B. A. Deep-Sea Res. 40, 673–685 (1993).
Sarnthein, M. Mar. Geol. 12, 245–266 (1972).
Christensen, J. P. W., Smethie, J. & Devol, A. H. Deep-Sea Res. 34, 1027–1047 (1987).
Naqvi, S. W. A. J. mar. Res. 45, 1049–1072 (1987).
Broecker, W. S. Prog. Oceanogr. 11, 151–197 (1982).
Berger, W. H. & Keir, R. S. in Climate Processes and Climate Sensitivity (eds Hansen, J. E. & Takahashi, T.) 337–351 (Am Geophys. Union, Washington DC, 1984).
Christensen, J. P., Murray, J. W., Devol, A. H. & Codispoti, L. A. Globl biogeochem. Cycles 1, 97–116 (1987).
Codispoti, L. A. in Productivity of the Ocean: Present and Past (eds Berger, W. H., Smetacek, V. S. & Wefer, G.) 377–394 (Wiley, Chichester, 1989).
Ganeshram, R., Pedersen, T. F., Calvert, S. E. & Murray, J. W. Mineralog. Mag. 58A, 313–314 (1994).
Goreau, T. J. et al. Appl. envir. Microbiol. 40, 526–532 (1980).
Lipschultz, F. et al. Nature 294, 641–643 (1981).
Naqvi, S. W. A. & Noronha, R. J. Deep-Sea Res. 38, 871–890 (1991).
Codispoti, L. A. et al. in Oceanography of the Indian Ocean (ed. Desai, B. N.) 271–284 (Oxford & IBH, New Delhi, 1992).
Leunberger, M. & Siegenthaler, U. Nature 360, 449–451 (1992).
Kim, K. & Craig, H. Science 262, 1855–1857 (1993).
Hastenrath, S. & Lamb, P. J. Climate Atlas of the Indian Ocean (Univ. Wisconsin, Madison, 1979).
Niitsuma, N., Oba, T. & Okada, M. Proc. ODP Sci. Res. 321–335 (1991).
Clemens, S. & Prell, W. L. Paleoceanography 5, 109–145 (1990).
Murray, D. W. & Prell, W. L. in Upwelling Systems: Evolution since the Early Miocence (eds Summerhayes, C. P., Prell, W. L. & Emeis, K. C.) 301–321 (Geological Soc., London, 1992).
Mantoura, R. F. C. et al. Deep-Sea Res. II 40, 651–671 (1993).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Altabet, M., Francois, R., Murray, D. et al. Climate-related variations in denitrification in the Arabian Sea from sediment 15N/14N ratios. Nature 373, 506–509 (1995). https://doi.org/10.1038/373506a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/373506a0
This article is cited by
-
Orbital-scale Asian summer monsoon variations: Paradox and exploration
Science China Earth Sciences (2021)
-
Last 10000 years Variation in the Intensity of OMZ-Core Reconstructed from Sediment of the Eastern Arabian Sea
Journal of the Geological Society of India (2021)
-
Isotope alteration caused by changes in biochemical composition of sedimentary organic matter
Biogeochemistry (2020)
-
Two-step closure of the Miocene Indian Ocean Gateway to the Mediterranean
Scientific Reports (2019)
-
Sources and transformations of organic matter in sediments of Asia’s largest brackish water lagoon (Chilika, India) and nearby mangrove ecosystem
Environmental Earth Sciences (2019)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.