Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Importance of iron for plankton blooms and carbon dioxide drawdown in the Southern Ocean

Abstract

THE iron hypothesis1–3—the suggestion that iron is a limiting nutrient for plankton productivity and consequent CO2 drawdown— has been tested by small-scale experiments in incubation bottles in the subarctic Pacific2,4 and Southern5 –7 Oceans, and by a recent large-scale experiment in the equatorial Pacific Ocean8,9. Here we test the idea by looking at natural levels of productivity in regions of the Southern Ocean with differing iron abundance. In the southerly branch of the Antarctic circumpolar current (ACC), upwelling of deep waters supplies sufficient iron to the surface to sustain moderate primary production but not to permit blooms to develop. In contrast, within the fast-flowing, iron-rich jet of the polar front (PF), spring blooms produced phytoplankton biomass an order of magnitude greater than that in southern ACC waters, leading to CO2 undersaturation. The plankton-rich PF waters were sharply delineated from adjacent iron-poor waters, indicating that iron availability was the critical factor in allowing blooms to occur.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gran, H. H. Rapp. P.-v. Cons. perm. int. Explor. Mer 75, 37–46 (1931).

    Google Scholar 

  2. Martin, J. H. & Fitzwater, S. E. Nature 331, 341–343 (1988).

    Article  ADS  CAS  Google Scholar 

  3. de Baar, H. J. W. Prog. Oceanogr. 33, 347–386 (1994).

    Article  ADS  Google Scholar 

  4. Coale, K. H. Limnol. Oceanogr. 36, 1851–1864 (1991).

    Article  ADS  CAS  Google Scholar 

  5. de Baar, H. J. W. et al. Mar. Ecol. Prog. Ser. 65, 105–122 (1990).

    Article  ADS  CAS  Google Scholar 

  6. Buma, A. G. J., de Baar, H. J. W., Nolting, R. F. & van Bennekom, A. J. Limnol. Oceanogr. 36, 1865–1878 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Martin, J. H. & Gordon, R. M. Globl Biogeochem. Cycles 4, 5–12 (1990).

    Article  ADS  CAS  Google Scholar 

  8. Martin, J. H. et al. Nature 371, 123–129 (1994).

    Article  ADS  CAS  Google Scholar 

  9. Watson, A. J. et al. Nature 371, 143–145 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Dugdale, R. C. & Wilkerson, F. P. Globl Biogeochem. Cycles 4, 13–19 (1990).

    Article  ADS  CAS  Google Scholar 

  11. Banse, K. Limnol. Oceanogr. 36, 1886–1898 (1991).

    Article  ADS  CAS  Google Scholar 

  12. Hart, T. J. Discovery Rep. 8, 1–268 (1934); Discovery Rep. 21, 261–365 (1942).

    Google Scholar 

  13. Westerlund, S. & Öhman, P. Mar. Chem. 35, 199–217 (1991).

    Article  CAS  Google Scholar 

  14. Nolting, R. F., de Baar, H. J. W., van Bennekom, A. J. & Masson, A. Mar. Chem. 35, 219–243 (1991).

    Article  CAS  Google Scholar 

  15. van Leeuwe, M. A., Scharek, R., de Baar, H. J. W., de Jong, J. T. F. & Goeyens, L. EOS (abstr.) 75, 178 (1994).

    Article  Google Scholar 

  16. Scharek, R., van Leeuwe, M. A., de Baar, H. J. W., de Jong, J. T. F. & Goeyens, L. EOS (abstr.) 75, 178 (1994).

    Article  Google Scholar 

  17. Bathmann, U., Smetacek, V., de Baar, H. J. W., Fahrbach, E. & Krause, G. (eds.) Ber. Polarforschung 135, 4–126 (1994).

  18. Jochem, F. J., Mathot, S. & Quéguiner, B. EOS (abstr.) 75, 158 (1994).

    Google Scholar 

  19. de Baar, H. J. W. et al. EOS (abstr.) 75, 178 (1994).

    Article  Google Scholar 

  20. Martin, J. H., Gordon, R. M. & Fitzwater, S. E. Nature 345, 156–158 (1990).

    Article  ADS  CAS  Google Scholar 

  21. Perisinotto, R., Laubscher, R. K. & McQuaid, C. D. Mar. Ecol. Prog. Ser. 88, 41–53 (1992).

    Article  ADS  Google Scholar 

  22. Trenberth, K. E., Large, W. G. & Olson, J. G. J. Phys. Oceanogr. 20, 1742–1760 (1990).

    Article  ADS  Google Scholar 

  23. Gordon, M., Coale, K. & Johnson, K. EOS (abstr.) 75, 114 (1994).

    Google Scholar 

  24. Wells, M. L., Price, N. M. & Bruland, K. W. Mar. Chem. (in the press).

  25. Martin, J. H. Nature 353, 123 (1991).

    Article  ADS  Google Scholar 

  26. Lancelot, C., Mathot, S., Veth, C. & de Baar, H. J. W. Polar Biol. 13, 377–387 (1993).

    Article  Google Scholar 

  27. Brand, L. Limnol. Oceanogr. 36, 1756–1771 (1991).

    Article  ADS  Google Scholar 

  28. Sunda, W. G., Swift, D. & Huntsman, S. A. Nature 351, 55–57 (1991).

    Article  ADS  CAS  Google Scholar 

  29. Hutchins, D. A., DiTullio, R. G., Bruland, K. W. Limnol. Oceanogr. 38, 1242–1255 (1993).

    Article  ADS  CAS  Google Scholar 

  30. Raven, J. A. New Phytol. 116, 1–18 (1990).

    Article  CAS  Google Scholar 

  31. Smetacek, V., Scharek, R. & Nöthig, E. M. in Antarctic Ecosystems (eds Kerry, K. R. & Hempel, G.) 103–114 (Springer, Berlin, 1990).

    Book  Google Scholar 

  32. Gordon, A. L., Taylor, H. W. & Georgi, D. T. in Polar Oceans (ed. Dunbar, M. J.) 45–67 (Arctic Inst. N. Am., McGill Univ., Montreal, 1977).

    Google Scholar 

  33. Miller, C. B., Frost, B. W., Wheeler, P. A., Landry, M. R., Welschmeyer, N. & Powell, T. M. Limnol. Oceanogr. 36, 1600–1615 (1991).

    Article  ADS  CAS  Google Scholar 

  34. Gargett, A. E. Limnol. Oceanogr. 36, 1527–1545 (1991).

    Article  ADS  Google Scholar 

  35. Martin, J. H., Gordon, R. M., Fitzwater, S. E. & Broenkow, W. W. Deep-Sea Res. 35, 649–680 (1989).

    Article  ADS  Google Scholar 

  36. Broecker, W. S. in Evolution of Physical Oceanography (eds Warren, B. A. & Wunsch, C. A.) 460 (MIT Press, Cambridge, Massachusetts, 1981).

    Google Scholar 

  37. Olbers, D. & Wenzel, M. in Oceanic Circulation Models: Combining Data and Dynamics (eds Anderson D. L. T. & Willebrand) 95–139 (Kluwer Academic, Dordrecht, 1989).

    Book  Google Scholar 

  38. Garcon, V. C., Thomas, F., Wong, C. S. & Minster, J. F. Deep-Sea Res. 39, 921–938 (1986).

    Article  ADS  Google Scholar 

  39. Duce, R. A. & Tindale, N. W. Limnol. Oceanogr. 36, 1715–1726 (1991).

    Article  ADS  CAS  Google Scholar 

  40. Nolting, R. F., de Jong, J. T. M., Löscher, B. M. & de Baar, H. J. W. EOS (abstr.) 75, 219 (1994).

    Article  Google Scholar 

  41. Timmermans, K. R., Gledhill, M., van den Berg, C. S., Nolting, R. F. & de Baar, H. J. W. EOS (abstr.) 75, 78 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Baar, H., de Jong, J., Bakker, D. et al. Importance of iron for plankton blooms and carbon dioxide drawdown in the Southern Ocean. Nature 373, 412–415 (1995). https://doi.org/10.1038/373412a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/373412a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing