Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Transplanting a unique allosteric effect from crocodile into human haemoglobin

Abstract

CROCODILES are able to remain under water for more than one hour without surfacing to breathe1,2 and often kill their prey by drowning it. How do crocodiles stay under water for a long time? When they hold their breath, bicarbonate ions, the final product of respiration, accumulate and drastically reduce the oxygen affinity of haemoglobin, releasing a large fraction of haemoglobin-bound oxygen into the tissues3,4. We have now located the bicarbonate-ion-binding site at the α1β2-subunit interface by making various human-crocodile chimaeric haemoglobins. Furthermore, we have been able to transplant the bicarbonate effect into human haemoglobin by replacing only a few residues, even though the amino-acid sequence identity between crocodile (Crocodylus niloticus) and human haemoglobins is only 68% for the α- and 51% for the β-subunit5. These results indicate that an entirely new function which enables species to adapt to a new environment could evolve in a protein by a relatively small number of amino-acid substitutions in key positions6.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cott, H. B. Trans. Zool. Soc, Lond. 29, 211–356 (1961).

    Article  Google Scholar 

  2. Andersen, H. T. Acta physiol. Scand. 53, 23–45 (1961).

    Article  CAS  Google Scholar 

  3. Bauer, C. & Jelkmann, W. Nature 269, 825–827 (1977).

    Article  ADS  CAS  Google Scholar 

  4. Bauer, C. et al. J. biol. Chem. 256, 8429–8435 (1981).

    CAS  PubMed  Google Scholar 

  5. Leclercq, F., Schnek, A. G., Braunitzer, G., Stangl, A. & Schrank, B. Hoppe-Seyler's Z. physiol. Chem. 362, 1151–1158 (1981).

    Article  CAS  Google Scholar 

  6. Perutz, M. F. Molec. Biol. Evol. 1, 1–28 (1983).

    CAS  PubMed  Google Scholar 

  7. Fermi, G. & Perutz, M. F. Atlas of Molecular Structure in Biology 2: Hemoglobin & Myoglobin (Clarendon, Oxford, 1981).

    Google Scholar 

  8. Kooyman, G. L. Diverse Divers Physiology and Behavior (Springer, Berlin, 1989).

    Book  Google Scholar 

  9. Perutz, M. F. et al. Nature 291, 682–684 (1981).

    Article  ADS  CAS  Google Scholar 

  10. Tame, J. R. H. thesis, Univ. Cambridge (1989).

  11. Perutz, M. F. Nature 228, 726–734 (1970).

    Article  ADS  CAS  Google Scholar 

  12. Monod, J., Wyman, J. & Changeux, J.-P. J. molec. Biol. 12, 88–118 (1965).

    Article  CAS  Google Scholar 

  13. Grigg, G. C., Wells, R. M. G. & Beard, L. A. J. exp. Biol. 175, 15–32 (1993).

    CAS  Google Scholar 

  14. Kimura, M. Sci. Am. 241, 94–104 (1971).

    Google Scholar 

  15. Ikemura, T. J. molec. Biol. 158, 573–597 (1982).

    Article  CAS  Google Scholar 

  16. Wells, J. M., Vasser, M. & Powers, D. B. Gene 34, 315 (1985).

    Article  CAS  Google Scholar 

  17. Hoffman, S. J. et al. Proc. natn. Acad. Sci. U.S.A. 87, 8521–8525 (1990).

    Article  ADS  CAS  Google Scholar 

  18. Komiyama, N. H., Shih, D. T.-B., Looker, D., Tame, J. & Nagai, K. Nature 352, 349–351 (1991).

    Article  ADS  CAS  Google Scholar 

  19. Imai, K. Meth. Enzym. 76, 438–449 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komiyama, N., Miyazaki, G., Tame, J. et al. Transplanting a unique allosteric effect from crocodile into human haemoglobin. Nature 373, 244–246 (1995). https://doi.org/10.1038/373244a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/373244a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing