Letter | Published:

Large rate accelerations in antibody catalysis by strategic use of haptenic charge

Naturevolume 373pages228230 (1995) | Download Citation



GENERAL acid–base catalysis contributes substantially to the efficacy of many enzymes, enabling an impressive array of eliminations, isomerizations, racemizations, hydrolyses and carbon–carbon bond-forming reactions to be carried out with high rates and selectivities1. The fundamental challenge of exploiting similar effects in designed catalysts such as catalytic antibodies2,3 is that of correctly positioning the catalytic groups in an appropriate active-site microenvironment. Charge complementarity between antibody and hapten (the template used to induce an antibody) has been used successfully in a number of instances to elicit acids and bases within immunoglobulin combining sites4–9, but the activities of the catalysts obtained by this strategy are generally considerably lower than those of natural enzymes. Here we report that by optimizing hapten design and efficiently screening the immune response, antibodies can be obtained that act effectively as general base catalysts. Thus a cationic hapten correctly mimicking the transition-state geometry of all reacting bonds and bearing little resemblance to the reaction product has yielded carboxylate containing antibodies that catalyse an E2 elimination with more than 103 turnovers per active site and rate accelerations of greater than 108. These results demonstrate that very large effects can be achieved by strategic use of haptenic charge.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Walsh, C. Enzymatic Reaction Mechanisms (Freeman, New York, 1979).

  2. 2

    Lerner, R. A., Benkovic, S. J. & Schultz, P. G. Science 252, 659–667 (1991).

  3. 3

    Hilvert, D. Curr. Opin. struct. Biol. 4, 612–617 (1994).

  4. 4

    Shokat, K. M., Leumann, C. J., Sugasawara, R. & Schultz, P. G. Nature 338, 269–271 (1989).

  5. 5

    Janda, K. D., Weinhouse, M. I., Schloeder, D. M., Lerner, R. A. & Benkovic, S. J. J. Am. chem. Soc. 112, 1274–1275 (1990).

  6. 6

    Jackson, D. Y. & Schultz, P. G. J. Am. chem. Soc. 113, 2319–2321 (1991).

  7. 7

    Uno, T. & Schultz, P. G. J. Am. chem. Soc. 114, 6573–6574 (1992).

  8. 8

    Reymond, J.-L., Jahangiri, G. K., Stoudt, C. & Lerner, R. A. J. Am. chem. Soc. 115, 3909–3917 (1993).

  9. 9

    Shokat, K., Uno, T. & Schultz, P. G. J. Am. chem. Soc. 116, 2261–2270 (1994).

  10. 10

    Casey, M. L., Kemp, D. S., Paul, K. G. & Cox, D. D. J. org. Chem. 38, 2295–2301 (1973).

  11. 11

    Kemp, D. S. & Casey, M. L. J. Am. chem. Soc. 95, 6670–6680 (1973).

  12. 12

    Kemp, D. S., Cox, D. D. & Paul, K. G. J. Am. chem. Soc. 97, 7312–7318 (1975).

  13. 13

    Harlow, E. & Lane, D. Antibodies: A Laboratory Manual (Cold Spring Harbor Lab., New York, 1988).

  14. 14

    Hilvert, D., Carpenter, S. H., Nared, K. D. & Auditor, M. T. M. Proc. natn. Acad. Sci. U.S.A. 85, 4953–4955 (1988).

  15. 15

    Lundblad, R. L. Chemical Reagents for Protein Modification 2nd edn 267–286 (CRC, Boca Raton, 1991).

  16. 16

    Parker, A. J. Chem. Rev. 69, 1–32 (1969).

  17. 17

    Kirby, A. J. Adv. phys. org. Chem. 17, 183–278 (1980).

  18. 18

    Warshell, A. Computer Modeling of Chemical Reactions in Enzymes and Solutions 153 169, 208–228 (Wiley, New York, 1991).

  19. 19

    Jencks, W. P. Adv. Enzymol. 43, 219–408 (1975).

  20. 20

    Gerlt, J. A., Kozarich, J. W., Kenyon, G. L. & Gassman, P. G. J. Am. chem. Soc. 113, 9667–9669 (1991).

  21. 21

    Kuliopulos, A., Talalay, P. & Mildvan, A. S. Biochemistry 29, 10271–10280 (1990).

  22. 22

    Cravatt, B. F., Ashley, J. A., Janda, K. D., Boger, D. L. & Lerner, R. A. J. Am. chem. Soc. 116, 6013–6014 (1994).

  23. 23

    Lauer, R. C., Soloman, P. H., Nakanishi, K. & Erlanger, B. F. Experiencia 30, 560–562 (1974).

  24. 24

    Habeeb, A. F. S. A. Analyt. Biochem. 14, 328–336 (1966).

Download references

Author information

Author notes

  1. Donald Hilvert: To whom correspondence should be addressed.


  1. Departments of Chemistry and Molecular Biology, The Scripps Research Institute, 10666 North Torrey Pines Road, La Jolla, California, 92037, USA

    • Simon N. Thorn
    • , Richard G. Daniels
    • , Maria-Teresa M. Auditor
    •  & Donald Hilvert


  1. Search for Simon N. Thorn in:

  2. Search for Richard G. Daniels in:

  3. Search for Maria-Teresa M. Auditor in:

  4. Search for Donald Hilvert in:

About this article

Publication history



Issue Date



Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.