Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Large rate accelerations in antibody catalysis by strategic use of haptenic charge

Abstract

GENERAL acid–base catalysis contributes substantially to the efficacy of many enzymes, enabling an impressive array of eliminations, isomerizations, racemizations, hydrolyses and carbon–carbon bond-forming reactions to be carried out with high rates and selectivities1. The fundamental challenge of exploiting similar effects in designed catalysts such as catalytic antibodies2,3 is that of correctly positioning the catalytic groups in an appropriate active-site microenvironment. Charge complementarity between antibody and hapten (the template used to induce an antibody) has been used successfully in a number of instances to elicit acids and bases within immunoglobulin combining sites4–9, but the activities of the catalysts obtained by this strategy are generally considerably lower than those of natural enzymes. Here we report that by optimizing hapten design and efficiently screening the immune response, antibodies can be obtained that act effectively as general base catalysts. Thus a cationic hapten correctly mimicking the transition-state geometry of all reacting bonds and bearing little resemblance to the reaction product has yielded carboxylate containing antibodies that catalyse an E2 elimination with more than 103 turnovers per active site and rate accelerations of greater than 108. These results demonstrate that very large effects can be achieved by strategic use of haptenic charge.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Walsh, C. Enzymatic Reaction Mechanisms (Freeman, New York, 1979).

    Google Scholar 

  2. Lerner, R. A., Benkovic, S. J. & Schultz, P. G. Science 252, 659–667 (1991).

    Article  ADS  CAS  Google Scholar 

  3. Hilvert, D. Curr. Opin. struct. Biol. 4, 612–617 (1994).

    Article  CAS  Google Scholar 

  4. Shokat, K. M., Leumann, C. J., Sugasawara, R. & Schultz, P. G. Nature 338, 269–271 (1989).

    Article  ADS  CAS  Google Scholar 

  5. Janda, K. D., Weinhouse, M. I., Schloeder, D. M., Lerner, R. A. & Benkovic, S. J. J. Am. chem. Soc. 112, 1274–1275 (1990).

    Article  CAS  Google Scholar 

  6. Jackson, D. Y. & Schultz, P. G. J. Am. chem. Soc. 113, 2319–2321 (1991).

    Article  CAS  Google Scholar 

  7. Uno, T. & Schultz, P. G. J. Am. chem. Soc. 114, 6573–6574 (1992).

    Article  CAS  Google Scholar 

  8. Reymond, J.-L., Jahangiri, G. K., Stoudt, C. & Lerner, R. A. J. Am. chem. Soc. 115, 3909–3917 (1993).

    Article  CAS  Google Scholar 

  9. Shokat, K., Uno, T. & Schultz, P. G. J. Am. chem. Soc. 116, 2261–2270 (1994).

    Article  CAS  Google Scholar 

  10. Casey, M. L., Kemp, D. S., Paul, K. G. & Cox, D. D. J. org. Chem. 38, 2295–2301 (1973).

    Google Scholar 

  11. Kemp, D. S. & Casey, M. L. J. Am. chem. Soc. 95, 6670–6680 (1973).

    Article  CAS  Google Scholar 

  12. Kemp, D. S., Cox, D. D. & Paul, K. G. J. Am. chem. Soc. 97, 7312–7318 (1975).

    Article  CAS  Google Scholar 

  13. Harlow, E. & Lane, D. Antibodies: A Laboratory Manual (Cold Spring Harbor Lab., New York, 1988).

    Google Scholar 

  14. Hilvert, D., Carpenter, S. H., Nared, K. D. & Auditor, M. T. M. Proc. natn. Acad. Sci. U.S.A. 85, 4953–4955 (1988).

    Article  ADS  CAS  Google Scholar 

  15. Lundblad, R. L. Chemical Reagents for Protein Modification 2nd edn 267–286 (CRC, Boca Raton, 1991).

    Google Scholar 

  16. Parker, A. J. Chem. Rev. 69, 1–32 (1969).

    Article  CAS  Google Scholar 

  17. Kirby, A. J. Adv. phys. org. Chem. 17, 183–278 (1980).

    CAS  Google Scholar 

  18. Warshell, A. Computer Modeling of Chemical Reactions in Enzymes and Solutions 153 169, 208–228 (Wiley, New York, 1991).

    Google Scholar 

  19. Jencks, W. P. Adv. Enzymol. 43, 219–408 (1975).

    CAS  PubMed  Google Scholar 

  20. Gerlt, J. A., Kozarich, J. W., Kenyon, G. L. & Gassman, P. G. J. Am. chem. Soc. 113, 9667–9669 (1991).

    Article  CAS  Google Scholar 

  21. Kuliopulos, A., Talalay, P. & Mildvan, A. S. Biochemistry 29, 10271–10280 (1990).

    Article  CAS  Google Scholar 

  22. Cravatt, B. F., Ashley, J. A., Janda, K. D., Boger, D. L. & Lerner, R. A. J. Am. chem. Soc. 116, 6013–6014 (1994).

    Article  CAS  Google Scholar 

  23. Lauer, R. C., Soloman, P. H., Nakanishi, K. & Erlanger, B. F. Experiencia 30, 560–562 (1974).

    Article  CAS  Google Scholar 

  24. Habeeb, A. F. S. A. Analyt. Biochem. 14, 328–336 (1966).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thorn, S., Daniels, R., Auditor, MT. et al. Large rate accelerations in antibody catalysis by strategic use of haptenic charge. Nature 373, 228–230 (1995). https://doi.org/10.1038/373228a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/373228a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing