Abstract
UBIQUITINATION of proteins involves the concerted action of the El ubiquitin-activating enzyme, E2 ubiquitin-conjugating enzymes and E3 ubiquitin–protein 1igases1–3. It has been proposed that E3s function as 'docking proteins', specifically binding substrate proteins and specific E2s, and that ubiquitin is then transferred directly from E2s to substrates1–5. We show here that formation of a ubiquitin thioester on E6–AP, an E3 involved in the human papillomavirus E6-induced ubiquitination of p53 (refs 6–10), is an intermediate step in E6-AP-dependent ubiquitination. The order of ubiquitin transfer is from El to E2, from E2 to E6-AP, and finally from E6-AP to a substrate. This cascade of ubiquitin thioester complexes suggests that E3s have a defined enzymatic activity and do not function simply as docking proteins. The cysteine residue of E6-AP responsible for ubiquitin thioester formation was mapped to a region that is highly conserved among several proteins of unknown function, suggesting that these proteins share the ability to form thioesters with ubiquitin.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
m6A-modified circFNDC3B inhibits colorectal cancer stemness and metastasis via RNF41-dependent ASB6 degradation
Cell Death & Disease Open Access 29 November 2022
-
Electrostatic and steric effects underlie acetylation-induced changes in ubiquitin structure and function
Nature Communications Open Access 16 September 2022
-
USP22 regulates lipidome accumulation by stabilizing PPARγ in hepatocellular carcinoma
Nature Communications Open Access 21 April 2022
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout
References
Hershko, A. & Ciechanover, A. A. Rev. Biochem. 61, 761–807 (1992).
Jentsch, S. A. Rev. Genet. 26, 177–205 (1992).
Varshavsky, A. Cell 69, 725–735 (1992).
Dohmen, R. J., Madura, K., Bartel, B. & Varshavsky, A. Proc. natn. Acad. Sci. U.S.A. 88, 7351–7355 (1991).
Watkins, J. F., Sung, P., Prakash, S. & Prakash, L. Genes Dev. 7, 250–261 (1993).
Scheffner, M., Werness, B. A., Huibregtse, J. M., Levine, A. J. & Howley, P. M. Cell 63, 1129–1136 (1990).
Huibregtse, J. M., Scheffner, M. & Howley, P. M. EMBO J. 13, 4129–4135 (1991).
Huibregtse, J. M., Scheffner, M. & Howley, P. M. Molec. cell. Biol. 13, 775–784 (1993).
Huibregtse, J. M., Scheffner, M. & Howley, P. M. Molec. cell. Biol. 13, 4918–4927 (1993).
Scheffner, M., Huibregtse, J. M., Vierstra, R. D. & Howley, P. M. Cell 75, 495–505 (1993).
Girod, P.-A., Carpenter, T. P., van Nocker, S., Sullivan, M. L. & Vierstra, R. D. PI. J. 3, 545–552 (1993).
Scheffner, M., Huibregtse, J. M. & Howley, P. M. Proc. natn. Acad. Sci. U.S.A. 91, 8797–8801 (1994).
Haas, A. L., Warms, J. V. B., Hershko, A. & Rose, I. A. J. biol. Chem. 257, 2543–2548 (1982).
Ciechanover, A., Elias, S., Heller, H. & Hershko, A. J. biol. Chem. 257, 2537–2542 (1982).
Hatfield, P. M. & Vierstra, R. D. J. biol. Chem. 267, 14799–14803 (1992).
Pickart, C. M. & Rose, I. A. J. biol. Chem. 260, 1573–1581 (1985).
Haas, A. L. & Bright, P. M. J. biol. Chem. 263, 13258–13267 (1988).
Berleth, E. S. et al. J. biol. Chem. 267, 16403–16411 (1992).
Bartel, B., Wünning, I. & Varshavsky, A. EMBO J. 9, 3179–3189 (1990).
Sung, P., Prakash, S. & Prakash, L. J. molec. Biol. 221, 745–749 (1991).
Müller, D., Rehbein, M., Baumeister, H. & Richter, D. Nucleic Acids Res. 20, 1471–1475 (1992).
Pascolo, S. et al. Yeast 8, 987–995 (1992).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Scheffner, M., Nuber, U. & Huibregtse, J. Protein ubiquitination involving an E1–E2–E3 enzyme ubiquitin thioester cascade. Nature 373, 81–83 (1995). https://doi.org/10.1038/373081a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/373081a0
This article is cited by
-
m6A-modified circFNDC3B inhibits colorectal cancer stemness and metastasis via RNF41-dependent ASB6 degradation
Cell Death & Disease (2022)
-
Electrostatic and steric effects underlie acetylation-induced changes in ubiquitin structure and function
Nature Communications (2022)
-
Small molecule inhibition of deubiquitinating enzyme JOSD1 as a novel targeted therapy for leukemias with mutant JAK2
Leukemia (2022)
-
USP22 regulates lipidome accumulation by stabilizing PPARγ in hepatocellular carcinoma
Nature Communications (2022)
-
A new dawn beyond lysine ubiquitination
Nature Chemical Biology (2022)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.